"타원곡선 y²=x³-x"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
이 항목의 스프링노트 원문주소==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">이 항목의 스프링노트 원문주소 | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">이 항목의 스프링노트 원문주소== |
* [[타원곡선 y²=x³-x|타원곡선 y^2=x^3-x]]<br> | * [[타원곡선 y²=x³-x|타원곡선 y^2=x^3-x]]<br> | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">개요 | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">개요== |
* 타원곡선 <math>y^2=x^3-x</math>의 예를 통한 여러가지 타원곡선과 관련한 개념의 이해<br> | * 타원곡선 <math>y^2=x^3-x</math>의 예를 통한 여러가지 타원곡선과 관련한 개념의 이해<br> | ||
19번째 줄: | 19번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">판별식과 conductor | + | <h5 style="margin: 0px; line-height: 2em;">판별식과 conductor== |
* 판별식 <math>\Delta=64</math><br> | * 판별식 <math>\Delta=64</math><br> | ||
28번째 줄: | 28번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">실수해 | + | <h5 style="margin: 0px; line-height: 2em;">실수해== |
[/pages/2061314/attachments/2299029 ] | [/pages/2061314/attachments/2299029 ] | ||
36번째 줄: | 36번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">유리수해 | + | <h5 style="margin: 0px; line-height: 2em;">유리수해== |
* <math>E(\mathbb Q)=\{(\infty,\infty), (0,0),(1,0),(-1,0)\} \simeq \frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{2\mathbb Z}</math><br> | * <math>E(\mathbb Q)=\{(\infty,\infty), (0,0),(1,0),(-1,0)\} \simeq \frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{2\mathbb Z}</math><br> | ||
45번째 줄: | 45번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">주기(periods) | + | <h5 style="margin: 0px; line-height: 2em;">주기(periods)== |
* [[타원곡선의 주기]] 의 공식을 이용하기 위해 <math>e_1=1, e_2=0, e_3=-1</math>로 두자 | * [[타원곡선의 주기]] 의 공식을 이용하기 위해 <math>e_1=1, e_2=0, e_3=-1</math>로 두자 | ||
58번째 줄: | 58번째 줄: | ||
− | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 2em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">유한체에서의 해의 개수 | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 2em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">유한체에서의 해의 개수== |
* 유한체에서의 해의 개수<br><math>E(\mathbb{F}_p)=\{(x,y)\in \mathbb{F}_p^2|E: y^2=x^3-x\}\cup \{(\infty,\infty})\}</math><br><math>M_p=\#E(\mathbb{F}_p)</math><br><math>a_p=p+1-M_p</math><br> | * 유한체에서의 해의 개수<br><math>E(\mathbb{F}_p)=\{(x,y)\in \mathbb{F}_p^2|E: y^2=x^3-x\}\cup \{(\infty,\infty})\}</math><br><math>M_p=\#E(\mathbb{F}_p)</math><br><math>a_p=p+1-M_p</math><br> | ||
67번째 줄: | 67번째 줄: | ||
− | ==제타함수 | + | ==제타함수== |
* [[대수적다양체의 제타함수]] 항목 참조 | * [[대수적다양체의 제타함수]] 항목 참조 | ||
76번째 줄: | 76번째 줄: | ||
− | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 2em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">모듈라 형식 | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 2em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">모듈라 형식== |
* 모듈라 형식<br><math>f(\tau)={\eta(4\tau)^2\eta(8\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{4n})^2(1-q^{8n})^2=\sum_{n=1}^{\infty}c_nq^n=q - 2 q^{5 }-3q^9+6q^{13}+2q^{17}+\cdots</math><br><math>\eta(\tau)</math>는 [[데데킨트 에타함수]]<br> | * 모듈라 형식<br><math>f(\tau)={\eta(4\tau)^2\eta(8\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{4n})^2(1-q^{8n})^2=\sum_{n=1}^{\infty}c_nq^n=q - 2 q^{5 }-3q^9+6q^{13}+2q^{17}+\cdots</math><br><math>\eta(\tau)</math>는 [[데데킨트 에타함수]]<br> | ||
87번째 줄: | 87번째 줄: | ||
− | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">재미있는 사실 | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">재미있는 사실== |
97번째 줄: | 97번째 줄: | ||
− | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">역사 | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">역사== |
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
105번째 줄: | 105번째 줄: | ||
− | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">메모 | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">메모== |
111번째 줄: | 111번째 줄: | ||
− | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련된 항목들 | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련된 항목들== |
* [[타니야마-시무라 추측(정리)]]<br> | * [[타니야마-시무라 추측(정리)]]<br> | ||
121번째 줄: | 121번째 줄: | ||
− | ==매스매티카 파일 및 계산 리소스[[4877449/attachments/4778709|4877449/attachments/4778709]] | + | ==매스매티카 파일 및 계산 리소스[[4877449/attachments/4778709|4877449/attachments/4778709]]== |
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxNGVjMDg4ZWEtMTk1Yy00MjM0LWFmZDItNTk4MGIzMzc5M2Q5&sort=name&layout=list&num=50 | * https://docs.google.com/leaf?id=0B8XXo8Tve1cxNGVjMDg4ZWEtMTk1Yy00MjM0LWFmZDItNTk4MGIzMzc5M2Q5&sort=name&layout=list&num=50 | ||
136번째 줄: | 136번째 줄: | ||
− | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">사전 형태의 자료 | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">사전 형태의 자료== |
* <br> | * <br> | ||
148번째 줄: | 148번째 줄: | ||
− | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련논문 | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련논문== |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
* http://dx.doi.org/ | * http://dx.doi.org/ |
2012년 11월 1일 (목) 13:12 판
이 항목의 스프링노트 원문주소==
개요==
- 타원곡선 \(y^2=x^3-x\)의 예를 통한 여러가지 타원곡선과 관련한 개념의 이해
- 복소수 위에 정의된 타원곡선은 정사각형 격자에 대응된다
- \(x\to -x\) , \(y\to iy\) 는 타원곡선의 대칭이다
- complex multiplication
- elliptic curve "32a2"
판별식과 conductor==
- 판별식 \(\Delta=64\)
- conductor \(N=32\)
실수해==
[/pages/2061314/attachments/2299029 ]
유리수해==
- \(E(\mathbb Q)=\{(\infty,\infty), (0,0),(1,0),(-1,0)\} \simeq \frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{2\mathbb Z}\)
- rank 는 0
주기(periods)==
- 타원곡선의 주기 의 공식을 이용하기 위해 \(e_1=1, e_2=0, e_3=-1\)로 두자
- 주기는 다음과 같이 주어진다
\(\omega_1=2\int_{1}^{\infty}\frac{dx}{\sqrt{x^3-x}}=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots\)
\(\omega_2=2i\int_0^1\frac{dx}{\sqrt{x-x^3}}=2i\int_{\infty}^1\frac{-dy}{\sqrt{y^3-y}}=i\omega_{1}\)
- 렘니스케이트(lemniscate) 곡선과 타원적분
\(2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots\)
\(2\int_0^1\frac{dx}{\sqrt{x-x^3}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots\)
- 모듈라 군, j-invariant and the singular moduli 의 special values 부분과 비교[1]
유한체에서의 해의 개수==
- 유한체에서의 해의 개수
\(E(\mathbb{F}_p)=\{(x,y)\in \mathbb{F}_p^2|E: y^2=x^3-x\}\cup \{(\infty,\infty})\}\)
\(M_p=\#E(\mathbb{F}_p)\)
\(a_p=p+1-M_p\)
- 아래 표 참조
제타함수
- 대수적다양체의 제타함수 항목 참조
- 로컬제타함수
\(p\neq 2\) 인 경우
\(Z_p(T)=\frac{1-a_pT+pT^2}{(1 - T)(1- pT)}\)
\(p= 2\)인 경우
\(Z_2(T)=\frac{1-a_2T}{(1 - T)(1- 2T)}=\frac{1}{(1 - T)(1- 2T)}\)
- 타원곡선 \(y^2=x^3-x\)의 예를 통한 여러가지 타원곡선과 관련한 개념의 이해
- 복소수 위에 정의된 타원곡선은 정사각형 격자에 대응된다
- \(x\to -x\) , \(y\to iy\) 는 타원곡선의 대칭이다
- complex multiplication
- elliptic curve "32a2"
- 판별식 \(\Delta=64\)
- conductor \(N=32\)
- \(E(\mathbb Q)=\{(\infty,\infty), (0,0),(1,0),(-1,0)\} \simeq \frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{2\mathbb Z}\)
- rank 는 0
- 타원곡선의 주기 의 공식을 이용하기 위해 \(e_1=1, e_2=0, e_3=-1\)로 두자
- 주기는 다음과 같이 주어진다
\(\omega_1=2\int_{1}^{\infty}\frac{dx}{\sqrt{x^3-x}}=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots\)
\(\omega_2=2i\int_0^1\frac{dx}{\sqrt{x-x^3}}=2i\int_{\infty}^1\frac{-dy}{\sqrt{y^3-y}}=i\omega_{1}\) - 렘니스케이트(lemniscate) 곡선과 타원적분
\(2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=\frac{\Gamma(1/4)^2}{\sqrt{2\pi}}=5.24\cdots\)
\(2\int_0^1\frac{dx}{\sqrt{x-x^3}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots\) - 모듈라 군, j-invariant and the singular moduli 의 special values 부분과 비교[1]
- 유한체에서의 해의 개수
\(E(\mathbb{F}_p)=\{(x,y)\in \mathbb{F}_p^2|E: y^2=x^3-x\}\cup \{(\infty,\infty})\}\)
\(M_p=\#E(\mathbb{F}_p)\)
\(a_p=p+1-M_p\) - 아래 표 참조
\(p\neq 2\) 인 경우
\(Z_p(T)=\frac{1-a_pT+pT^2}{(1 - T)(1- pT)}\)
\(p= 2\)인 경우
\(Z_2(T)=\frac{1-a_2T}{(1 - T)(1- 2T)}=\frac{1}{(1 - T)(1- 2T)}\)