"푸리에 변환"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
24번째 줄: 24번째 줄:
  
 
* [[가우스 합|가우스합]]에의 응용<br>
 
* [[가우스 합|가우스합]]에의 응용<br>
 
+
* [[유한아벨군과 이산푸리에변환|유한아벨군과 푸리에변환]] 항목에서 다루기로 함<br>
* <math>a\in (\mathbb Z/N\mathbb Z)^{*}</math>와 곱셈에 대한 준동형사상 <math>\chi \colon (\mathbb Z/N\mathbb Z)^{*} \to \mathbb C^{*}</math>에 대하여 가우스합을 다음과 같이 정의함
 
 
 
<math>g_a(\chi) := \sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} \chi(t) e^{2 \pi i a t/N}=\sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} \chi(t) \zeta^{a t}</math>
 
 
 
여기서 <math> \zeta = e^{2\pi i/N}</math>
 
 
 
*  성질<br><math>g_a(\chi) = \chi(a^{-1}) g_1(\chi)=\bar\chi(a)g_1(\chi)</math><br><math>\chi(n)=\frac{1}{N}\sum_{(a,N)=1}g_a(\chi)e^{-2\pi i n a/N}</math><br>
 
 
 
 
 
 
 
 
 
 
 
<h5>이차잉여 캐릭터와 푸리에 변환</h5>
 
 
 
<math>K = \mathbb{Q}(\sqrt{-d})</math>
 
 
 
 
 
 
 
Jacobi symbol
 
 
 
<math>f(n)=(\frac{d_K}{n})</math>
 
 
 
Fourier transform
 
 
 
<math>\hat{f}(n)=\sum_{k\pmod {d_K}} (\frac{d_K}{k})e^{2\pi i kn/|d_K|}</math>
 
 
 
<math>f(n)=\hat{f}(n)/\hat{f}(1)</math>
 
  
 
 
 
 
162번째 줄: 135번째 줄:
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
*  
 
 
*   <br>
 

2011년 5월 12일 (목) 06:28 판

이 항목의 스프링노트 원문주소

 

 

간단한 소개
  • 아벨군 \(G\)과 불변측도, 캐릭터 \(\chi:G\to \mathbb{C}\)그 위에 정의된 함수 \(f:G \to \mathbb C\),  에 대하여 푸리에 변환을 다음과 같이 정의
    \(\hat f(\chi) := \int_{g \in G} f(g)\bar \chi(g) \,dg\)

 

 

유한아벨군의 경우
  • \(G=(\mathbb Z/N\mathbb Z)^{*}\)와 준동형사상 \(f \colon (\mathbb Z/N\mathbb Z)^{*} \to \mathbb C^{*}\)의 경우

\(\hat f(a) := \sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) e^{2 \pi i a t/N}=\sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) \zeta^{a t}\)

여기서 \( \zeta = e^{2\pi i/N}\)

 

 

 

푸리에변환(실수의 경우)
  • 리 아벨군으로서의 \(G=(\mathbb{R}, +)\) 과 \(f:G \to \mathbb C\) 에 대하여 푸리에변환을 다음과 같이 정의
    \(\hat{f}(\xi) := \int_{-\infty}^{\infty} f(x)\ e^{- 2\pi i x \xi}\,dx\)

 

 

푸리에 변환의 예

\(f(x)=e^{-\alpha x^2}\)

\(\hat{f}(\xi)=\sqrt{\frac{\pi}{\alpha}}\cdot e^{-\frac{(\pi \xi)^2}{\alpha}}\)

\(f(x)=e^{\pi i (x^2\tau+2x z)\)

\(\hat{f}(\xi)=\sqrt{\frac{i}{\tau}}e^{-\pi i\frac{(\xi-z)^2}{\tau}\)

 

 

멜린 변환

 

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

 

수학용어번역

 

 

사전형태의 자료

 

 

관련기사