"등각 사상 (conformal mapping)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
51번째 줄: 51번째 줄:
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
  
 
 
 
 

2013년 1월 14일 (월) 14:20 판

이 항목의 수학노트 원문주소

 

 

개요

  • \((M,g)\)와 \((M',g')\) 는 같은 차원의 두 리만 다양체
  • \(\varphi : M\to M'\) 가 적당한 함수 \(\Omega : M\to \mathbb{R_{+}}\) 에 대하여, \(\varphi^{*}g'=\Omega^2g\) 를 만족시킬 때, 이를 등각 사상이라 하며, \(\Omega\) 를 conformal factor라 부른다
  • isometry는 등각 사상의 특별한 경우가 된다

 

 

local expression

  • \((\varphi^g')_{\mu\nu}(a)=g'_{ij}(\varphi(a))(\partial_{\mu}\varphi^{i})(\partial_{\nu}\varphi^{j})\) 이므로, 등각 사상이 되려면\[\Omega^{2}g_{\mu\nu}(a)=g'_{ij}(\varphi(a))(\partial_{\mu}\varphi^{i})(\partial_{\nu}\varphi^{j})\] 가 만족되어야 한다

 

 

 

복소함수론에서의 등각 사상

  • 도메인 \(U\subset \mathbb{C}\)에 대하여, 유클리드 메트릭이 주어졌다고 가정
  • 함수 \(\varphi : U\to \mathbb{C}\)가 등각 사상이 될 조건은 코쉬-리만 방정식 으로 주어진다

 

 

평사 투영의 예

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트