"아이젠슈타인 기약다항식 판정법"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| 1번째 줄: | 1번째 줄: | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==개요==  | ==개요==  | ||
| − | *   | + | *    | 
| − | + | ;정리 (아이젠슈타인)  | |
| − | + | 정수계수 다항식 $a_0x^n + a_1x_{n−1} +\cdots+a_n$의 $a_0$를 제외한 모든 계수가 적당한 소수 $p$에 의해 나누어지고, $a_n$이 $p^2$로 나누어지지 않으면, 이는 기약다항식이다.  | |
==원분다항식의 기약판정==  | ==원분다항식의 기약판정==  | ||
| − | |||
* [[원분다항식(cyclotomic polynomial)]]  | * [[원분다항식(cyclotomic polynomial)]]  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ==관련된 항목들==  | |
| − | |||
| − | + | ||
| − | |||
| − | |||
| + | ==리뷰, 에세이, 강의노트==  | ||
* David A. Cox, "[http://www.cs.amherst.edu/%7Edac/normat.pdf Why Eisenstein proved the Eisenstein Criterion and why Schönemann discovered it first]", American Mathematical Monthly 118 Vol 1 (January 2011)  | * David A. Cox, "[http://www.cs.amherst.edu/%7Edac/normat.pdf Why Eisenstein proved the Eisenstein Criterion and why Schönemann discovered it first]", American Mathematical Monthly 118 Vol 1 (January 2011)  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
[[분류:타원적분]]  | [[분류:타원적분]]  | ||
2014년 6월 16일 (월) 03:14 판
개요
- 정리 (아이젠슈타인)
 
정수계수 다항식 $a_0x^n + a_1x_{n−1} +\cdots+a_n$의 $a_0$를 제외한 모든 계수가 적당한 소수 $p$에 의해 나누어지고, $a_n$이 $p^2$로 나누어지지 않으면, 이는 기약다항식이다.
원분다항식의 기약판정
관련된 항목들
 
리뷰, 에세이, 강의노트
- David A. Cox, "Why Eisenstein proved the Eisenstein Criterion and why Schönemann discovered it first", American Mathematical Monthly 118 Vol 1 (January 2011)