"리만 가설"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (Pythagoras0 사용자가 리만가설 문서를 리만 가설 문서로 옮겼습니다.)
42번째 줄: 42번째 줄:
  
 
*  Rubinstein-Sarnak 1994
 
*  Rubinstein-Sarnak 1994
** how often \pi(x)>Li(x)
+
** how often $\pi(x)>\operatorname{Li}(x)$
 
*  even(x) : number of natural numbers , even number of prime factors
 
*  even(x) : number of natural numbers , even number of prime factors
 
*  Odd(x) : odd number of prime factors
 
*  Odd(x) : odd number of prime factors
49번째 줄: 49번째 줄:
 
*  1937비노그라도프
 
*  1937비노그라도프
 
*  1997 Deshouillers-Effinger-te Riele-Zinoviev
 
*  1997 Deshouillers-Effinger-te Riele-Zinoviev
* [[순환소수에 대한 아틴의 추측]]:<math>C_{\mathrm{Artin}}=\prod_{q\ \mathrm{prime}} \left(1-\frac{1}{q(q-1)}\right) = 0.3739558136\ldots.</math>
+
* [[순환소수에 대한 아틴의 추측]]
* 1967 Hooley
+
:<math>C_{\mathrm{Artin}}=\prod_{q\ \mathrm{prime}} \left(1-\frac{1}{q(q-1)}\right) = 0.3739558136\ldots.</math>
 
+
* 1967 Hooley
* 1973 Weinberger
+
* 1973 Weinberger
* [[이차 수체 유클리드 도메인의 분류|이차수체 유클리드 도메인의 분류]]
+
* [[이차 수체 유클리드 도메인의 분류]]
  
 
   
 
   
99번째 줄: 99번째 줄:
  
 
==Computation of non-trivial zeros==
 
==Computation of non-trivial zeros==
 
+
* R. P. Brent, “On the zeros of the Riemann zeta function in the critical strip”, Mathematics of Computation 33 (1979), 1361–1372.
R. P. Brent, “On the zeros of the Riemann zeta function in the critical strip”, Mathematics of Computation 33 (1979), 1361–1372.
 
 
 
 
* http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf
 
* http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf
 
+
* The Riemann-Siegel Expansion for the Zeta Function: High Orders and Remainders, M. V. Berry
The Riemann-Siegel Expansion for the Zeta Function: High Orders and Remainders, M. V. Berry
+
* http://www.dtc.umn.edu/~odlyzko/doc/arch/fast.zeta.eval.pdf
 
+
* [http://www.mathematik.hu-berlin.de/%7Egaggle/EVENTS/2006/BRENT60/presentations/Herman%20J.J.%20te%20Riele%20-%20Separation%20of%20the%20complex%20zeros%20of%20the%20Riemann%20zeta%20function.pdf http://www.mathematik.hu-berlin.de/~gaggle/EVENTS/2006/BRENT60/presentations/Herman%20J.J.%20te%20Riele%20-%20Separation%20of%20the%20complex%20zeros%20of%20the%20Riemann%20zeta%20function.pdf]
+
* http://wwwmaths.anu.edu.au/~brent/pd/rpb047.pdf
 
 
[http://www.dtc.umn.edu/%7Eodlyzko/doc/arch/fast.zeta.eval.pdf http://www.dtc.umn.edu/~odlyzko/doc/arch/fast.zeta.eval.pdf]
 
 
 
[http://www.mathematik.hu-berlin.de/%7Egaggle/EVENTS/2006/BRENT60/presentations/Herman%20J.J.%20te%20Riele%20-%20Separation%20of%20the%20complex%20zeros%20of%20the%20Riemann%20zeta%20function.pdf http://www.mathematik.hu-berlin.de/~gaggle/EVENTS/2006/BRENT60/presentations/Herman%20J.J.%20te%20Riele%20-%20Separation%20of%20the%20complex%20zeros%20of%20the%20Riemann%20zeta%20function.pdf]
 
 
 
[http://wwwmaths.anu.edu.au/%7Ebrent/pd/rpb047.pdf http://wwwmaths.anu.edu.au/~brent/pd/rpb047.pdf]
 
 
 
 
  
 
   
 
   
120번째 줄: 110번째 줄:
 
==재미있는 사실==
 
==재미있는 사실==
  
* 영화속 오류 russell crowe riemann zeta
+
* 영화속 오류 russell crowe riemann zeta
 
* http://mathoverflow.net/questions/13647/why-does-the-riemann-zeta-function-have-non-trivial-zeros
 
* http://mathoverflow.net/questions/13647/why-does-the-riemann-zeta-function-have-non-trivial-zeros
  
136번째 줄: 126번째 줄:
  
 
==관련된 항목들==
 
==관련된 항목들==
 
+
* [[소수정리]]
* [[감마함수]]
+
* [[클레이 연구소 밀레니엄 문제들]]
 
 
 
   
 
   
  
 
   
 
   
 
==수학용어번역==
 
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
==사전 형태의 자료==
 
==사전 형태의 자료==
  
* [http://ko.wikipedia.org/wiki/%EB%A6%AC%EB%A7%8C%EA%B0%80%EC%84%A4 http://ko.wikipedia.org/wiki/리만가설]
+
* http://ko.wikipedia.org/wiki/리만가설
 
* http://en.wikipedia.org/wiki/Riemann_hypothesis
 
* http://en.wikipedia.org/wiki/Riemann_hypothesis
 
* http://en.wikipedia.org/wiki/Riemann-Siegel_formula
 
* http://en.wikipedia.org/wiki/Riemann-Siegel_formula
* [http://en.wikipedia.org/wiki/Riemann%E2%80%93Siegel_theta_function http://en.wikipedia.org/wiki/Riemann–Siegel_theta_function]
+
* http://en.wikipedia.org/wiki/Riemann–Siegel_theta_function
 
* http://www.wolframalpha.com/input/?i=Riemann+zeta
 
* http://www.wolframalpha.com/input/?i=Riemann+zeta
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
  
+
 
 +
 
 +
==리뷰, 에세이, 강의노트==
 +
* Conrey, J. Brian. "The Riemann hypothesis." Notices of the AMS 50, no. 3 (2003): 341-353. http://www.ams.org/notices/200303/fea-conrey-web.pdf
 +
* Bombieri, E. "Problems of the millennium: The Riemann hypothesis." Clay mathematical Institute (2000).
  
 
   
 
   
  
 
==관련논문==
 
==관련논문==
 +
* [http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/ Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse] Bernhard Riemann, November 1859
  
* [http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/ Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse] Bernhard Riemann, November 1859
 
 
[[분류:리만 제타 함수]]
 
[[분류:리만 제타 함수]]

2014년 1월 5일 (일) 15:26 판

개요

  • 리만제타함수의 함수방정식은 다음과 같음\[\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\]
  • 자명한 해는 \(s=-2,-4,-6\cdots\)
  • 리만제타함수의 자명하지 않은 해(비자명해)는 그 실수부가 \(1/2\) 이라는 추측



소수정리

  • 리만 제타 함수와 소수 계량 함수의 관계
  • "모든 실수 t에 대하여 \(\zeta(1+it)\neq 0 \) 이다" 는 소수정리와 동치명제이다
  • 소수정리



비자명해의 수론적 특성

  • 추측
    • The positive imaginary parts of nontrivial zeros of \(\zeta(s)\) are linearly independent over \(\mathbb{Q}\)



일반화된 리만가설




응용

  • Rubinstein-Sarnak 1994
    • how often $\pi(x)>\operatorname{Li}(x)$
  • even(x) : number of natural numbers , even number of prime factors
  • Odd(x) : odd number of prime factors
  • 골드바흐 추측
  • 1923 하디-리틀우드
  • 1937비노그라도프
  • 1997 Deshouillers-Effinger-te Riele-Zinoviev
  • 순환소수에 대한 아틴의 추측

\[C_{\mathrm{Artin}}=\prod_{q\ \mathrm{prime}} \left(1-\frac{1}{q(q-1)}\right) = 0.3739558136\ldots.\]



Spectal theory and RH



Hilbert-Polya



Noncommutatative geometry

  • Noncommutative Geometry, Quantum Fields, and Motives Alain Connes, Matilde Marcolli
  • Noncommutative Geometry and Number Theory: Where Arithmetic Meets Geometry and Physics (Aspects of Mathematics) Caterina Consani, Matilde Marcolli (Eds.)



Random matrices



Computation of non-trivial zeros


재미있는 사실



역사



관련된 항목들


사전 형태의 자료


리뷰, 에세이, 강의노트


관련논문