"해석적확장(analytic continuation)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
15번째 줄: | 15번째 줄: | ||
==예== | ==예== | ||
− | * [[자코비 세타함수]] 를 다음과 같이 복소수 <math>x</math> 에 대한 함수로 보면, <math>|x|<1</math>을 넘어서 해석함수로 확장시킬 수 없음:<math>\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}</math | + | * [[자코비 세타함수]] 를 다음과 같이 복소수 <math>x</math> 에 대한 함수로 보면, <math>|x|<1</math>을 넘어서 해석함수로 확장시킬 수 없음:<math>\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}</math> |
55번째 줄: | 55번째 줄: | ||
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
− | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] | + | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] |
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
69번째 줄: | 69번째 줄: | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
− | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
2020년 11월 16일 (월) 06:45 판
이 항목의 스프링노트 원문주소
개요
예
- 자코비 세타함수 를 다음과 같이 복소수 \(x\) 에 대한 함수로 보면, \(|x|<1\)을 넘어서 해석함수로 확장시킬 수 없음\[\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}\]
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문