"다항식 x³+x-1"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (새 문서: ==다항식 $x^3+x-1$== * 다항식의 판별식(discriminant)은 $-4 a^3-27 b^2=-4(1)^3-27=-31$ * 다음과 같은 복소해를 가진다 $$ \{-0.341164-1.16154 i,-0.341164+1.161...) |
Pythagoras0 (토론 | 기여) |
||
16번째 줄: | 16번째 줄: | ||
여기서 $L$은 [[로저스 다이로그 함수 (Rogers' dilogarithm)]] | 여기서 $L$은 [[로저스 다이로그 함수 (Rogers' dilogarithm)]] | ||
+ | |||
+ | ==매스매티카 파일 및 계산 리소스== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxNERONnludm92LVU/edit | ||
+ | * http://www.wolframalpha.com/input/?i=0.6556498122438059383414780 | ||
[[분류:정수론]] | [[분류:정수론]] | ||
[[분류:에세이]] | [[분류:에세이]] |
2013년 8월 21일 (수) 08:43 판
다항식 $x^3+x-1$
- 다항식의 판별식(discriminant)은 $-4 a^3-27 b^2=-4(1)^3-27=-31$
- 다음과 같은 복소해를 가진다
$$ \{-0.341164-1.16154 i,-0.341164+1.16154 i,0.682328\} $$
- 그래프
다이로그 함수에서의 값
- 방정식 $x^3+x-1=0$의 실수해 $x=0.682328\cdots$에 대하여, 다음의 값은 무리수인가?
$$ L(x)/L(1)=6L(x)/\pi^2=0.655649812243805938341478\cdots $$ 여기서 $L$은 로저스 다이로그 함수 (Rogers' dilogarithm)