"콕세터 군 H3"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
50번째 줄: | 50번째 줄: | ||
[[파일:콕세터 군 H31.png]] | [[파일:콕세터 군 H31.png]] | ||
+ | |||
+ | ==테이블== | ||
+ | * 원소 | ||
+ | $$ | ||
+ | \begin{array}{ccc} | ||
+ | & w & \ell(w) \\ | ||
+ | \hline | ||
+ | 1 & s() & 0 \\ | ||
+ | 2 & s(1) & 1 \\ | ||
+ | 3 & s(2) & 1 \\ | ||
+ | 4 & s(3) & 1 \\ | ||
+ | 5 & s(2,1) & 2 \\ | ||
+ | 6 & s(3,1) & 2 \\ | ||
+ | 7 & s(1,2) & 2 \\ | ||
+ | 8 & s(3,2) & 2 \\ | ||
+ | 9 & s(2,3) & 2 \\ | ||
+ | 10 & s(1,2,1) & 3 \\ | ||
+ | 11 & s(3,2,1) & 3 \\ | ||
+ | 12 & s(2,3,1) & 3 \\ | ||
+ | 13 & s(2,1,2) & 3 \\ | ||
+ | 14 & s(3,1,2) & 3 \\ | ||
+ | 15 & s(2,3,2) & 3 \\ | ||
+ | 16 & s(1,2,3) & 3 \\ | ||
+ | 17 & s(2,1,2,1) & 4 \\ | ||
+ | 18 & s(3,1,2,1) & 4 \\ | ||
+ | 19 & s(2,3,2,1) & 4 \\ | ||
+ | 20 & s(1,2,3,1) & 4 \\ | ||
+ | 21 & s(1,2,1,2) & 4 \\ | ||
+ | 22 & s(3,2,1,2) & 4 \\ | ||
+ | 23 & s(2,3,1,2) & 4 \\ | ||
+ | 24 & s(1,2,3,2) & 4 \\ | ||
+ | 25 & s(2,1,2,3) & 4 \\ | ||
+ | 26 & s(1,2,1,2,1) & 5 \\ | ||
+ | 27 & s(3,2,1,2,1) & 5 \\ | ||
+ | 28 & s(2,3,1,2,1) & 5 \\ | ||
+ | 29 & s(1,2,3,2,1) & 5 \\ | ||
+ | 30 & s(2,1,2,3,1) & 5 \\ | ||
+ | 31 & s(3,1,2,1,2) & 5 \\ | ||
+ | 32 & s(2,3,2,1,2) & 5 \\ | ||
+ | 33 & s(1,2,3,1,2) & 5 \\ | ||
+ | 34 & s(2,1,2,3,2) & 5 \\ | ||
+ | 35 & s(1,2,1,2,3) & 5 \\ | ||
+ | 36 & s(3,2,1,2,3) & 5 \\ | ||
+ | 37 & s(3,1,2,1,2,1) & 6 \\ | ||
+ | 38 & s(2,3,2,1,2,1) & 6 \\ | ||
+ | 39 & s(1,2,3,1,2,1) & 6 \\ | ||
+ | 40 & s(2,1,2,3,2,1) & 6 \\ | ||
+ | 41 & s(1,2,1,2,3,1) & 6 \\ | ||
+ | 42 & s(3,2,1,2,3,1) & 6 \\ | ||
+ | 43 & s(2,3,1,2,1,2) & 6 \\ | ||
+ | 44 & s(1,2,3,2,1,2) & 6 \\ | ||
+ | 45 & s(2,1,2,3,1,2) & 6 \\ | ||
+ | 46 & s(1,2,1,2,3,2) & 6 \\ | ||
+ | 47 & s(3,2,1,2,3,2) & 6 \\ | ||
+ | 48 & s(3,1,2,1,2,3) & 6 \\ | ||
+ | 49 & s(2,3,1,2,1,2,1) & 7 \\ | ||
+ | 50 & s(1,2,3,2,1,2,1) & 7 \\ | ||
+ | 51 & s(2,1,2,3,1,2,1) & 7 \\ | ||
+ | 52 & s(1,2,1,2,3,2,1) & 7 \\ | ||
+ | 53 & s(3,2,1,2,3,2,1) & 7 \\ | ||
+ | 54 & s(3,1,2,1,2,3,1) & 7 \\ | ||
+ | 55 & s(1,2,3,1,2,1,2) & 7 \\ | ||
+ | 56 & s(2,1,2,3,2,1,2) & 7 \\ | ||
+ | 57 & s(1,2,1,2,3,1,2) & 7 \\ | ||
+ | 58 & s(3,2,1,2,3,1,2) & 7 \\ | ||
+ | 59 & s(3,1,2,1,2,3,2) & 7 \\ | ||
+ | 60 & s(2,3,1,2,1,2,3) & 7 \\ | ||
+ | 61 & s(1,2,3,1,2,1,2,1) & 8 \\ | ||
+ | 62 & s(2,1,2,3,2,1,2,1) & 8 \\ | ||
+ | 63 & s(1,2,1,2,3,1,2,1) & 8 \\ | ||
+ | 64 & s(3,2,1,2,3,1,2,1) & 8 \\ | ||
+ | 65 & s(3,1,2,1,2,3,2,1) & 8 \\ | ||
+ | 66 & s(2,3,1,2,1,2,3,1) & 8 \\ | ||
+ | 67 & s(2,1,2,3,1,2,1,2) & 8 \\ | ||
+ | 68 & s(1,2,1,2,3,2,1,2) & 8 \\ | ||
+ | 69 & s(3,2,1,2,3,2,1,2) & 8 \\ | ||
+ | 70 & s(3,1,2,1,2,3,1,2) & 8 \\ | ||
+ | 71 & s(2,3,1,2,1,2,3,2) & 8 \\ | ||
+ | 72 & s(1,2,3,1,2,1,2,3) & 8 \\ | ||
+ | 73 & s(2,1,2,3,1,2,1,2,1) & 9 \\ | ||
+ | 74 & s(1,2,1,2,3,2,1,2,1) & 9 \\ | ||
+ | 75 & s(3,2,1,2,3,2,1,2,1) & 9 \\ | ||
+ | 76 & s(3,1,2,1,2,3,1,2,1) & 9 \\ | ||
+ | 77 & s(2,3,1,2,1,2,3,2,1) & 9 \\ | ||
+ | 78 & s(1,2,3,1,2,1,2,3,1) & 9 \\ | ||
+ | 79 & s(1,2,1,2,3,1,2,1,2) & 9 \\ | ||
+ | 80 & s(3,2,1,2,3,1,2,1,2) & 9 \\ | ||
+ | 81 & s(3,1,2,1,2,3,2,1,2) & 9 \\ | ||
+ | 82 & s(2,3,1,2,1,2,3,1,2) & 9 \\ | ||
+ | 83 & s(1,2,3,1,2,1,2,3,2) & 9 \\ | ||
+ | 84 & s(2,1,2,3,1,2,1,2,3) & 9 \\ | ||
+ | 85 & s(1,2,1,2,3,1,2,1,2,1) & 10 \\ | ||
+ | 86 & s(3,2,1,2,3,1,2,1,2,1) & 10 \\ | ||
+ | 87 & s(3,1,2,1,2,3,2,1,2,1) & 10 \\ | ||
+ | 88 & s(2,3,1,2,1,2,3,1,2,1) & 10 \\ | ||
+ | 89 & s(1,2,3,1,2,1,2,3,2,1) & 10 \\ | ||
+ | 90 & s(2,1,2,3,1,2,1,2,3,1) & 10 \\ | ||
+ | 91 & s(3,1,2,1,2,3,1,2,1,2) & 10 \\ | ||
+ | 92 & s(2,3,1,2,1,2,3,2,1,2) & 10 \\ | ||
+ | 93 & s(1,2,3,1,2,1,2,3,1,2) & 10 \\ | ||
+ | 94 & s(2,1,2,3,1,2,1,2,3,2) & 10 \\ | ||
+ | 95 & s(3,2,1,2,3,1,2,1,2,3) & 10 \\ | ||
+ | 96 & s(3,1,2,1,2,3,1,2,1,2,1) & 11 \\ | ||
+ | 97 & s(2,3,1,2,1,2,3,2,1,2,1) & 11 \\ | ||
+ | 98 & s(1,2,3,1,2,1,2,3,1,2,1) & 11 \\ | ||
+ | 99 & s(2,1,2,3,1,2,1,2,3,2,1) & 11 \\ | ||
+ | 100 & s(3,2,1,2,3,1,2,1,2,3,1) & 11 \\ | ||
+ | 101 & s(2,3,1,2,1,2,3,1,2,1,2) & 11 \\ | ||
+ | 102 & s(1,2,3,1,2,1,2,3,2,1,2) & 11 \\ | ||
+ | 103 & s(2,1,2,3,1,2,1,2,3,1,2) & 11 \\ | ||
+ | 104 & s(3,2,1,2,3,1,2,1,2,3,2) & 11 \\ | ||
+ | 105 & s(2,3,1,2,1,2,3,1,2,1,2,1) & 12 \\ | ||
+ | 106 & s(1,2,3,1,2,1,2,3,2,1,2,1) & 12 \\ | ||
+ | 107 & s(2,1,2,3,1,2,1,2,3,1,2,1) & 12 \\ | ||
+ | 108 & s(3,2,1,2,3,1,2,1,2,3,2,1) & 12 \\ | ||
+ | 109 & s(1,2,3,1,2,1,2,3,1,2,1,2) & 12 \\ | ||
+ | 110 & s(2,1,2,3,1,2,1,2,3,2,1,2) & 12 \\ | ||
+ | 111 & s(3,2,1,2,3,1,2,1,2,3,1,2) & 12 \\ | ||
+ | 112 & s(1,2,3,1,2,1,2,3,1,2,1,2,1) & 13 \\ | ||
+ | 113 & s(2,1,2,3,1,2,1,2,3,2,1,2,1) & 13 \\ | ||
+ | 114 & s(3,2,1,2,3,1,2,1,2,3,1,2,1) & 13 \\ | ||
+ | 115 & s(2,1,2,3,1,2,1,2,3,1,2,1,2) & 13 \\ | ||
+ | 116 & s(3,2,1,2,3,1,2,1,2,3,2,1,2) & 13 \\ | ||
+ | 117 & s(2,1,2,3,1,2,1,2,3,1,2,1,2,1) & 14 \\ | ||
+ | 118 & s(3,2,1,2,3,1,2,1,2,3,2,1,2,1) & 14 \\ | ||
+ | 119 & s(3,2,1,2,3,1,2,1,2,3,1,2,1,2) & 14 \\ | ||
+ | 120 & s(3,2,1,2,3,1,2,1,2,3,1,2,1,2,1) & 15 | ||
+ | \end{array} | ||
+ | $$ | ||
==재미있는 사실== | ==재미있는 사실== |
2014년 6월 30일 (월) 06:28 판
개요
- 다음과 같이 정의되는 콕세터 군 $H_3$
$$ \left\langle r_1,r_2,r_3 \mid r_i^2=(r_3r_1)^2=(r_1r_2)^3=(r_2r_3)^5=1\right\rangle $$
- 불변량
$$ \begin{array}{c|ccccc} & \text{rank} & \text{degree} & \text{exponent} & \text{order} & \text{Coxeter} \\ \hline H_3 & 3 & 2,6,10 & 1,5,9 & 120 & 10 \end{array} $$
푸앵카레 다항식
- $H_3$의 푸앵카레 다항식은 다음과 같다
$$ \begin{aligned} P_{W}(q)&=\sum_{w\in W}q^{\ell(w)} \\ &=1+3 q+5 q^2+7 q^3+9 q^4+11 q^5+12 q^6+12 q^7+12 q^8+12 q^9+11 q^{10}+9 q^{11}+7 q^{12}+5 q^{13}+3 q^{14}+q^{15} \end{aligned} $$
콕세터 원소
- 콕세터 다항식, 즉 콕세터 원소의 특성다항식은 다음과 같다
$$ -(x+1) \left(x^2- \varphi x +1\right) $$ 여기서 $\varphi=\frac{1+\sqrt{5}}{2}$
- 콕세터 다항식의 세 해는 $\zeta, \zeta^5,\zeta^9$로 주어지며 여기서 $\zeta=e^{2\pi i/10}$
루트 시스템
- 30개의 원소로 구성
- 다음과 같은 세 벡터가 simple system을 이룬다
$$ \begin{align} r_1= \beta(1+2 \alpha,1 , -2 \alpha) \\ r_2= \beta(-1-2 \alpha , 1 , 2 \alpha) \\ r_3= \beta(2 \alpha , -1-2 \alpha , 1) \end{align} $$ 여기서 $\alpha=\cos \pi/5, \beta=\cos 2\pi/5$
콕세터 평면으로의 사영
테이블
- 원소
$$ \begin{array}{ccc} & w & \ell(w) \\ \hline 1 & s() & 0 \\ 2 & s(1) & 1 \\ 3 & s(2) & 1 \\ 4 & s(3) & 1 \\ 5 & s(2,1) & 2 \\ 6 & s(3,1) & 2 \\ 7 & s(1,2) & 2 \\ 8 & s(3,2) & 2 \\ 9 & s(2,3) & 2 \\ 10 & s(1,2,1) & 3 \\ 11 & s(3,2,1) & 3 \\ 12 & s(2,3,1) & 3 \\ 13 & s(2,1,2) & 3 \\ 14 & s(3,1,2) & 3 \\ 15 & s(2,3,2) & 3 \\ 16 & s(1,2,3) & 3 \\ 17 & s(2,1,2,1) & 4 \\ 18 & s(3,1,2,1) & 4 \\ 19 & s(2,3,2,1) & 4 \\ 20 & s(1,2,3,1) & 4 \\ 21 & s(1,2,1,2) & 4 \\ 22 & s(3,2,1,2) & 4 \\ 23 & s(2,3,1,2) & 4 \\ 24 & s(1,2,3,2) & 4 \\ 25 & s(2,1,2,3) & 4 \\ 26 & s(1,2,1,2,1) & 5 \\ 27 & s(3,2,1,2,1) & 5 \\ 28 & s(2,3,1,2,1) & 5 \\ 29 & s(1,2,3,2,1) & 5 \\ 30 & s(2,1,2,3,1) & 5 \\ 31 & s(3,1,2,1,2) & 5 \\ 32 & s(2,3,2,1,2) & 5 \\ 33 & s(1,2,3,1,2) & 5 \\ 34 & s(2,1,2,3,2) & 5 \\ 35 & s(1,2,1,2,3) & 5 \\ 36 & s(3,2,1,2,3) & 5 \\ 37 & s(3,1,2,1,2,1) & 6 \\ 38 & s(2,3,2,1,2,1) & 6 \\ 39 & s(1,2,3,1,2,1) & 6 \\ 40 & s(2,1,2,3,2,1) & 6 \\ 41 & s(1,2,1,2,3,1) & 6 \\ 42 & s(3,2,1,2,3,1) & 6 \\ 43 & s(2,3,1,2,1,2) & 6 \\ 44 & s(1,2,3,2,1,2) & 6 \\ 45 & s(2,1,2,3,1,2) & 6 \\ 46 & s(1,2,1,2,3,2) & 6 \\ 47 & s(3,2,1,2,3,2) & 6 \\ 48 & s(3,1,2,1,2,3) & 6 \\ 49 & s(2,3,1,2,1,2,1) & 7 \\ 50 & s(1,2,3,2,1,2,1) & 7 \\ 51 & s(2,1,2,3,1,2,1) & 7 \\ 52 & s(1,2,1,2,3,2,1) & 7 \\ 53 & s(3,2,1,2,3,2,1) & 7 \\ 54 & s(3,1,2,1,2,3,1) & 7 \\ 55 & s(1,2,3,1,2,1,2) & 7 \\ 56 & s(2,1,2,3,2,1,2) & 7 \\ 57 & s(1,2,1,2,3,1,2) & 7 \\ 58 & s(3,2,1,2,3,1,2) & 7 \\ 59 & s(3,1,2,1,2,3,2) & 7 \\ 60 & s(2,3,1,2,1,2,3) & 7 \\ 61 & s(1,2,3,1,2,1,2,1) & 8 \\ 62 & s(2,1,2,3,2,1,2,1) & 8 \\ 63 & s(1,2,1,2,3,1,2,1) & 8 \\ 64 & s(3,2,1,2,3,1,2,1) & 8 \\ 65 & s(3,1,2,1,2,3,2,1) & 8 \\ 66 & s(2,3,1,2,1,2,3,1) & 8 \\ 67 & s(2,1,2,3,1,2,1,2) & 8 \\ 68 & s(1,2,1,2,3,2,1,2) & 8 \\ 69 & s(3,2,1,2,3,2,1,2) & 8 \\ 70 & s(3,1,2,1,2,3,1,2) & 8 \\ 71 & s(2,3,1,2,1,2,3,2) & 8 \\ 72 & s(1,2,3,1,2,1,2,3) & 8 \\ 73 & s(2,1,2,3,1,2,1,2,1) & 9 \\ 74 & s(1,2,1,2,3,2,1,2,1) & 9 \\ 75 & s(3,2,1,2,3,2,1,2,1) & 9 \\ 76 & s(3,1,2,1,2,3,1,2,1) & 9 \\ 77 & s(2,3,1,2,1,2,3,2,1) & 9 \\ 78 & s(1,2,3,1,2,1,2,3,1) & 9 \\ 79 & s(1,2,1,2,3,1,2,1,2) & 9 \\ 80 & s(3,2,1,2,3,1,2,1,2) & 9 \\ 81 & s(3,1,2,1,2,3,2,1,2) & 9 \\ 82 & s(2,3,1,2,1,2,3,1,2) & 9 \\ 83 & s(1,2,3,1,2,1,2,3,2) & 9 \\ 84 & s(2,1,2,3,1,2,1,2,3) & 9 \\ 85 & s(1,2,1,2,3,1,2,1,2,1) & 10 \\ 86 & s(3,2,1,2,3,1,2,1,2,1) & 10 \\ 87 & s(3,1,2,1,2,3,2,1,2,1) & 10 \\ 88 & s(2,3,1,2,1,2,3,1,2,1) & 10 \\ 89 & s(1,2,3,1,2,1,2,3,2,1) & 10 \\ 90 & s(2,1,2,3,1,2,1,2,3,1) & 10 \\ 91 & s(3,1,2,1,2,3,1,2,1,2) & 10 \\ 92 & s(2,3,1,2,1,2,3,2,1,2) & 10 \\ 93 & s(1,2,3,1,2,1,2,3,1,2) & 10 \\ 94 & s(2,1,2,3,1,2,1,2,3,2) & 10 \\ 95 & s(3,2,1,2,3,1,2,1,2,3) & 10 \\ 96 & s(3,1,2,1,2,3,1,2,1,2,1) & 11 \\ 97 & s(2,3,1,2,1,2,3,2,1,2,1) & 11 \\ 98 & s(1,2,3,1,2,1,2,3,1,2,1) & 11 \\ 99 & s(2,1,2,3,1,2,1,2,3,2,1) & 11 \\ 100 & s(3,2,1,2,3,1,2,1,2,3,1) & 11 \\ 101 & s(2,3,1,2,1,2,3,1,2,1,2) & 11 \\ 102 & s(1,2,3,1,2,1,2,3,2,1,2) & 11 \\ 103 & s(2,1,2,3,1,2,1,2,3,1,2) & 11 \\ 104 & s(3,2,1,2,3,1,2,1,2,3,2) & 11 \\ 105 & s(2,3,1,2,1,2,3,1,2,1,2,1) & 12 \\ 106 & s(1,2,3,1,2,1,2,3,2,1,2,1) & 12 \\ 107 & s(2,1,2,3,1,2,1,2,3,1,2,1) & 12 \\ 108 & s(3,2,1,2,3,1,2,1,2,3,2,1) & 12 \\ 109 & s(1,2,3,1,2,1,2,3,1,2,1,2) & 12 \\ 110 & s(2,1,2,3,1,2,1,2,3,2,1,2) & 12 \\ 111 & s(3,2,1,2,3,1,2,1,2,3,1,2) & 12 \\ 112 & s(1,2,3,1,2,1,2,3,1,2,1,2,1) & 13 \\ 113 & s(2,1,2,3,1,2,1,2,3,2,1,2,1) & 13 \\ 114 & s(3,2,1,2,3,1,2,1,2,3,1,2,1) & 13 \\ 115 & s(2,1,2,3,1,2,1,2,3,1,2,1,2) & 13 \\ 116 & s(3,2,1,2,3,1,2,1,2,3,2,1,2) & 13 \\ 117 & s(2,1,2,3,1,2,1,2,3,1,2,1,2,1) & 14 \\ 118 & s(3,2,1,2,3,1,2,1,2,3,2,1,2,1) & 14 \\ 119 & s(3,2,1,2,3,1,2,1,2,3,1,2,1,2) & 14 \\ 120 & s(3,2,1,2,3,1,2,1,2,3,1,2,1,2,1) & 15 \end{array} $$
재미있는 사실
- 2011년 9월 미국수학회보(Notices of the American Mathematical Society)의 표지에 콕세터 평면으로의 사영이 등장, 링크
관련된 항목들
매스매티카 파일 및 계산 리소스