"콕세터 군 H3"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
50번째 줄: 50번째 줄:
 
[[파일:콕세터 군 H31.png]]
 
[[파일:콕세터 군 H31.png]]
  
 +
 +
==테이블==
 +
* 원소
 +
$$
 +
\begin{array}{ccc}
 +
  & w & \ell(w) \\
 +
\hline
 +
1 & s() & 0 \\
 +
2 & s(1) & 1 \\
 +
3 & s(2) & 1 \\
 +
4 & s(3) & 1 \\
 +
5 & s(2,1) & 2 \\
 +
6 & s(3,1) & 2 \\
 +
7 & s(1,2) & 2 \\
 +
8 & s(3,2) & 2 \\
 +
9 & s(2,3) & 2 \\
 +
10 & s(1,2,1) & 3 \\
 +
11 & s(3,2,1) & 3 \\
 +
12 & s(2,3,1) & 3 \\
 +
13 & s(2,1,2) & 3 \\
 +
14 & s(3,1,2) & 3 \\
 +
15 & s(2,3,2) & 3 \\
 +
16 & s(1,2,3) & 3 \\
 +
17 & s(2,1,2,1) & 4 \\
 +
18 & s(3,1,2,1) & 4 \\
 +
19 & s(2,3,2,1) & 4 \\
 +
20 & s(1,2,3,1) & 4 \\
 +
21 & s(1,2,1,2) & 4 \\
 +
22 & s(3,2,1,2) & 4 \\
 +
23 & s(2,3,1,2) & 4 \\
 +
24 & s(1,2,3,2) & 4 \\
 +
25 & s(2,1,2,3) & 4 \\
 +
26 & s(1,2,1,2,1) & 5 \\
 +
27 & s(3,2,1,2,1) & 5 \\
 +
28 & s(2,3,1,2,1) & 5 \\
 +
29 & s(1,2,3,2,1) & 5 \\
 +
30 & s(2,1,2,3,1) & 5 \\
 +
31 & s(3,1,2,1,2) & 5 \\
 +
32 & s(2,3,2,1,2) & 5 \\
 +
33 & s(1,2,3,1,2) & 5 \\
 +
34 & s(2,1,2,3,2) & 5 \\
 +
35 & s(1,2,1,2,3) & 5 \\
 +
36 & s(3,2,1,2,3) & 5 \\
 +
37 & s(3,1,2,1,2,1) & 6 \\
 +
38 & s(2,3,2,1,2,1) & 6 \\
 +
39 & s(1,2,3,1,2,1) & 6 \\
 +
40 & s(2,1,2,3,2,1) & 6 \\
 +
41 & s(1,2,1,2,3,1) & 6 \\
 +
42 & s(3,2,1,2,3,1) & 6 \\
 +
43 & s(2,3,1,2,1,2) & 6 \\
 +
44 & s(1,2,3,2,1,2) & 6 \\
 +
45 & s(2,1,2,3,1,2) & 6 \\
 +
46 & s(1,2,1,2,3,2) & 6 \\
 +
47 & s(3,2,1,2,3,2) & 6 \\
 +
48 & s(3,1,2,1,2,3) & 6 \\
 +
49 & s(2,3,1,2,1,2,1) & 7 \\
 +
50 & s(1,2,3,2,1,2,1) & 7 \\
 +
51 & s(2,1,2,3,1,2,1) & 7 \\
 +
52 & s(1,2,1,2,3,2,1) & 7 \\
 +
53 & s(3,2,1,2,3,2,1) & 7 \\
 +
54 & s(3,1,2,1,2,3,1) & 7 \\
 +
55 & s(1,2,3,1,2,1,2) & 7 \\
 +
56 & s(2,1,2,3,2,1,2) & 7 \\
 +
57 & s(1,2,1,2,3,1,2) & 7 \\
 +
58 & s(3,2,1,2,3,1,2) & 7 \\
 +
59 & s(3,1,2,1,2,3,2) & 7 \\
 +
60 & s(2,3,1,2,1,2,3) & 7 \\
 +
61 & s(1,2,3,1,2,1,2,1) & 8 \\
 +
62 & s(2,1,2,3,2,1,2,1) & 8 \\
 +
63 & s(1,2,1,2,3,1,2,1) & 8 \\
 +
64 & s(3,2,1,2,3,1,2,1) & 8 \\
 +
65 & s(3,1,2,1,2,3,2,1) & 8 \\
 +
66 & s(2,3,1,2,1,2,3,1) & 8 \\
 +
67 & s(2,1,2,3,1,2,1,2) & 8 \\
 +
68 & s(1,2,1,2,3,2,1,2) & 8 \\
 +
69 & s(3,2,1,2,3,2,1,2) & 8 \\
 +
70 & s(3,1,2,1,2,3,1,2) & 8 \\
 +
71 & s(2,3,1,2,1,2,3,2) & 8 \\
 +
72 & s(1,2,3,1,2,1,2,3) & 8 \\
 +
73 & s(2,1,2,3,1,2,1,2,1) & 9 \\
 +
74 & s(1,2,1,2,3,2,1,2,1) & 9 \\
 +
75 & s(3,2,1,2,3,2,1,2,1) & 9 \\
 +
76 & s(3,1,2,1,2,3,1,2,1) & 9 \\
 +
77 & s(2,3,1,2,1,2,3,2,1) & 9 \\
 +
78 & s(1,2,3,1,2,1,2,3,1) & 9 \\
 +
79 & s(1,2,1,2,3,1,2,1,2) & 9 \\
 +
80 & s(3,2,1,2,3,1,2,1,2) & 9 \\
 +
81 & s(3,1,2,1,2,3,2,1,2) & 9 \\
 +
82 & s(2,3,1,2,1,2,3,1,2) & 9 \\
 +
83 & s(1,2,3,1,2,1,2,3,2) & 9 \\
 +
84 & s(2,1,2,3,1,2,1,2,3) & 9 \\
 +
85 & s(1,2,1,2,3,1,2,1,2,1) & 10 \\
 +
86 & s(3,2,1,2,3,1,2,1,2,1) & 10 \\
 +
87 & s(3,1,2,1,2,3,2,1,2,1) & 10 \\
 +
88 & s(2,3,1,2,1,2,3,1,2,1) & 10 \\
 +
89 & s(1,2,3,1,2,1,2,3,2,1) & 10 \\
 +
90 & s(2,1,2,3,1,2,1,2,3,1) & 10 \\
 +
91 & s(3,1,2,1,2,3,1,2,1,2) & 10 \\
 +
92 & s(2,3,1,2,1,2,3,2,1,2) & 10 \\
 +
93 & s(1,2,3,1,2,1,2,3,1,2) & 10 \\
 +
94 & s(2,1,2,3,1,2,1,2,3,2) & 10 \\
 +
95 & s(3,2,1,2,3,1,2,1,2,3) & 10 \\
 +
96 & s(3,1,2,1,2,3,1,2,1,2,1) & 11 \\
 +
97 & s(2,3,1,2,1,2,3,2,1,2,1) & 11 \\
 +
98 & s(1,2,3,1,2,1,2,3,1,2,1) & 11 \\
 +
99 & s(2,1,2,3,1,2,1,2,3,2,1) & 11 \\
 +
100 & s(3,2,1,2,3,1,2,1,2,3,1) & 11 \\
 +
101 & s(2,3,1,2,1,2,3,1,2,1,2) & 11 \\
 +
102 & s(1,2,3,1,2,1,2,3,2,1,2) & 11 \\
 +
103 & s(2,1,2,3,1,2,1,2,3,1,2) & 11 \\
 +
104 & s(3,2,1,2,3,1,2,1,2,3,2) & 11 \\
 +
105 & s(2,3,1,2,1,2,3,1,2,1,2,1) & 12 \\
 +
106 & s(1,2,3,1,2,1,2,3,2,1,2,1) & 12 \\
 +
107 & s(2,1,2,3,1,2,1,2,3,1,2,1) & 12 \\
 +
108 & s(3,2,1,2,3,1,2,1,2,3,2,1) & 12 \\
 +
109 & s(1,2,3,1,2,1,2,3,1,2,1,2) & 12 \\
 +
110 & s(2,1,2,3,1,2,1,2,3,2,1,2) & 12 \\
 +
111 & s(3,2,1,2,3,1,2,1,2,3,1,2) & 12 \\
 +
112 & s(1,2,3,1,2,1,2,3,1,2,1,2,1) & 13 \\
 +
113 & s(2,1,2,3,1,2,1,2,3,2,1,2,1) & 13 \\
 +
114 & s(3,2,1,2,3,1,2,1,2,3,1,2,1) & 13 \\
 +
115 & s(2,1,2,3,1,2,1,2,3,1,2,1,2) & 13 \\
 +
116 & s(3,2,1,2,3,1,2,1,2,3,2,1,2) & 13 \\
 +
117 & s(2,1,2,3,1,2,1,2,3,1,2,1,2,1) & 14 \\
 +
118 & s(3,2,1,2,3,1,2,1,2,3,2,1,2,1) & 14 \\
 +
119 & s(3,2,1,2,3,1,2,1,2,3,1,2,1,2) & 14 \\
 +
120 & s(3,2,1,2,3,1,2,1,2,3,1,2,1,2,1) & 15
 +
\end{array}
 +
$$
  
 
==재미있는 사실==
 
==재미있는 사실==

2014년 6월 30일 (월) 06:28 판

개요

  • 다음과 같이 정의되는 콕세터 군 $H_3$

$$ \left\langle r_1,r_2,r_3 \mid r_i^2=(r_3r_1)^2=(r_1r_2)^3=(r_2r_3)^5=1\right\rangle $$

  • 불변량

$$ \begin{array}{c|ccccc} & \text{rank} & \text{degree} & \text{exponent} & \text{order} & \text{Coxeter} \\ \hline H_3 & 3 & 2,6,10 & 1,5,9 & 120 & 10 \end{array} $$


푸앵카레 다항식

  • $H_3$의 푸앵카레 다항식은 다음과 같다

$$ \begin{aligned} P_{W}(q)&=\sum_{w\in W}q^{\ell(w)} \\ &=1+3 q+5 q^2+7 q^3+9 q^4+11 q^5+12 q^6+12 q^7+12 q^8+12 q^9+11 q^{10}+9 q^{11}+7 q^{12}+5 q^{13}+3 q^{14}+q^{15} \end{aligned} $$


콕세터 원소

  • 콕세터 다항식, 즉 콕세터 원소의 특성다항식은 다음과 같다

$$ -(x+1) \left(x^2- \varphi x +1\right) $$ 여기서 $\varphi=\frac{1+\sqrt{5}}{2}$

  • 콕세터 다항식의 세 해는 $\zeta, \zeta^5,\zeta^9$로 주어지며 여기서 $\zeta=e^{2\pi i/10}$


루트 시스템

  • 30개의 원소로 구성
  • 다음과 같은 세 벡터가 simple system을 이룬다

$$ \begin{align} r_1= \beta(1+2 \alpha,1 , -2 \alpha) \\ r_2= \beta(-1-2 \alpha , 1 , 2 \alpha) \\ r_3= \beta(2 \alpha , -1-2 \alpha , 1) \end{align} $$ 여기서 $\alpha=\cos \pi/5, \beta=\cos 2\pi/5$

콕세터 군 H32.png

콕세터 평면으로의 사영

콕세터 군 H31.png


테이블

  • 원소

$$ \begin{array}{ccc} & w & \ell(w) \\ \hline 1 & s() & 0 \\ 2 & s(1) & 1 \\ 3 & s(2) & 1 \\ 4 & s(3) & 1 \\ 5 & s(2,1) & 2 \\ 6 & s(3,1) & 2 \\ 7 & s(1,2) & 2 \\ 8 & s(3,2) & 2 \\ 9 & s(2,3) & 2 \\ 10 & s(1,2,1) & 3 \\ 11 & s(3,2,1) & 3 \\ 12 & s(2,3,1) & 3 \\ 13 & s(2,1,2) & 3 \\ 14 & s(3,1,2) & 3 \\ 15 & s(2,3,2) & 3 \\ 16 & s(1,2,3) & 3 \\ 17 & s(2,1,2,1) & 4 \\ 18 & s(3,1,2,1) & 4 \\ 19 & s(2,3,2,1) & 4 \\ 20 & s(1,2,3,1) & 4 \\ 21 & s(1,2,1,2) & 4 \\ 22 & s(3,2,1,2) & 4 \\ 23 & s(2,3,1,2) & 4 \\ 24 & s(1,2,3,2) & 4 \\ 25 & s(2,1,2,3) & 4 \\ 26 & s(1,2,1,2,1) & 5 \\ 27 & s(3,2,1,2,1) & 5 \\ 28 & s(2,3,1,2,1) & 5 \\ 29 & s(1,2,3,2,1) & 5 \\ 30 & s(2,1,2,3,1) & 5 \\ 31 & s(3,1,2,1,2) & 5 \\ 32 & s(2,3,2,1,2) & 5 \\ 33 & s(1,2,3,1,2) & 5 \\ 34 & s(2,1,2,3,2) & 5 \\ 35 & s(1,2,1,2,3) & 5 \\ 36 & s(3,2,1,2,3) & 5 \\ 37 & s(3,1,2,1,2,1) & 6 \\ 38 & s(2,3,2,1,2,1) & 6 \\ 39 & s(1,2,3,1,2,1) & 6 \\ 40 & s(2,1,2,3,2,1) & 6 \\ 41 & s(1,2,1,2,3,1) & 6 \\ 42 & s(3,2,1,2,3,1) & 6 \\ 43 & s(2,3,1,2,1,2) & 6 \\ 44 & s(1,2,3,2,1,2) & 6 \\ 45 & s(2,1,2,3,1,2) & 6 \\ 46 & s(1,2,1,2,3,2) & 6 \\ 47 & s(3,2,1,2,3,2) & 6 \\ 48 & s(3,1,2,1,2,3) & 6 \\ 49 & s(2,3,1,2,1,2,1) & 7 \\ 50 & s(1,2,3,2,1,2,1) & 7 \\ 51 & s(2,1,2,3,1,2,1) & 7 \\ 52 & s(1,2,1,2,3,2,1) & 7 \\ 53 & s(3,2,1,2,3,2,1) & 7 \\ 54 & s(3,1,2,1,2,3,1) & 7 \\ 55 & s(1,2,3,1,2,1,2) & 7 \\ 56 & s(2,1,2,3,2,1,2) & 7 \\ 57 & s(1,2,1,2,3,1,2) & 7 \\ 58 & s(3,2,1,2,3,1,2) & 7 \\ 59 & s(3,1,2,1,2,3,2) & 7 \\ 60 & s(2,3,1,2,1,2,3) & 7 \\ 61 & s(1,2,3,1,2,1,2,1) & 8 \\ 62 & s(2,1,2,3,2,1,2,1) & 8 \\ 63 & s(1,2,1,2,3,1,2,1) & 8 \\ 64 & s(3,2,1,2,3,1,2,1) & 8 \\ 65 & s(3,1,2,1,2,3,2,1) & 8 \\ 66 & s(2,3,1,2,1,2,3,1) & 8 \\ 67 & s(2,1,2,3,1,2,1,2) & 8 \\ 68 & s(1,2,1,2,3,2,1,2) & 8 \\ 69 & s(3,2,1,2,3,2,1,2) & 8 \\ 70 & s(3,1,2,1,2,3,1,2) & 8 \\ 71 & s(2,3,1,2,1,2,3,2) & 8 \\ 72 & s(1,2,3,1,2,1,2,3) & 8 \\ 73 & s(2,1,2,3,1,2,1,2,1) & 9 \\ 74 & s(1,2,1,2,3,2,1,2,1) & 9 \\ 75 & s(3,2,1,2,3,2,1,2,1) & 9 \\ 76 & s(3,1,2,1,2,3,1,2,1) & 9 \\ 77 & s(2,3,1,2,1,2,3,2,1) & 9 \\ 78 & s(1,2,3,1,2,1,2,3,1) & 9 \\ 79 & s(1,2,1,2,3,1,2,1,2) & 9 \\ 80 & s(3,2,1,2,3,1,2,1,2) & 9 \\ 81 & s(3,1,2,1,2,3,2,1,2) & 9 \\ 82 & s(2,3,1,2,1,2,3,1,2) & 9 \\ 83 & s(1,2,3,1,2,1,2,3,2) & 9 \\ 84 & s(2,1,2,3,1,2,1,2,3) & 9 \\ 85 & s(1,2,1,2,3,1,2,1,2,1) & 10 \\ 86 & s(3,2,1,2,3,1,2,1,2,1) & 10 \\ 87 & s(3,1,2,1,2,3,2,1,2,1) & 10 \\ 88 & s(2,3,1,2,1,2,3,1,2,1) & 10 \\ 89 & s(1,2,3,1,2,1,2,3,2,1) & 10 \\ 90 & s(2,1,2,3,1,2,1,2,3,1) & 10 \\ 91 & s(3,1,2,1,2,3,1,2,1,2) & 10 \\ 92 & s(2,3,1,2,1,2,3,2,1,2) & 10 \\ 93 & s(1,2,3,1,2,1,2,3,1,2) & 10 \\ 94 & s(2,1,2,3,1,2,1,2,3,2) & 10 \\ 95 & s(3,2,1,2,3,1,2,1,2,3) & 10 \\ 96 & s(3,1,2,1,2,3,1,2,1,2,1) & 11 \\ 97 & s(2,3,1,2,1,2,3,2,1,2,1) & 11 \\ 98 & s(1,2,3,1,2,1,2,3,1,2,1) & 11 \\ 99 & s(2,1,2,3,1,2,1,2,3,2,1) & 11 \\ 100 & s(3,2,1,2,3,1,2,1,2,3,1) & 11 \\ 101 & s(2,3,1,2,1,2,3,1,2,1,2) & 11 \\ 102 & s(1,2,3,1,2,1,2,3,2,1,2) & 11 \\ 103 & s(2,1,2,3,1,2,1,2,3,1,2) & 11 \\ 104 & s(3,2,1,2,3,1,2,1,2,3,2) & 11 \\ 105 & s(2,3,1,2,1,2,3,1,2,1,2,1) & 12 \\ 106 & s(1,2,3,1,2,1,2,3,2,1,2,1) & 12 \\ 107 & s(2,1,2,3,1,2,1,2,3,1,2,1) & 12 \\ 108 & s(3,2,1,2,3,1,2,1,2,3,2,1) & 12 \\ 109 & s(1,2,3,1,2,1,2,3,1,2,1,2) & 12 \\ 110 & s(2,1,2,3,1,2,1,2,3,2,1,2) & 12 \\ 111 & s(3,2,1,2,3,1,2,1,2,3,1,2) & 12 \\ 112 & s(1,2,3,1,2,1,2,3,1,2,1,2,1) & 13 \\ 113 & s(2,1,2,3,1,2,1,2,3,2,1,2,1) & 13 \\ 114 & s(3,2,1,2,3,1,2,1,2,3,1,2,1) & 13 \\ 115 & s(2,1,2,3,1,2,1,2,3,1,2,1,2) & 13 \\ 116 & s(3,2,1,2,3,1,2,1,2,3,2,1,2) & 13 \\ 117 & s(2,1,2,3,1,2,1,2,3,1,2,1,2,1) & 14 \\ 118 & s(3,2,1,2,3,1,2,1,2,3,2,1,2,1) & 14 \\ 119 & s(3,2,1,2,3,1,2,1,2,3,1,2,1,2) & 14 \\ 120 & s(3,2,1,2,3,1,2,1,2,3,1,2,1,2,1) & 15 \end{array} $$

재미있는 사실

  • 2011년 9월 미국수학회보(Notices of the American Mathematical Society)의 표지에 콕세터 평면으로의 사영이 등장, 링크


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료