"Volume of a compact Lie group"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
==expositions== | ==expositions== | ||
+ | * Diaconis, Persi, and Peter J. Forrester. “A. Hurwitz and the Origins of Random Matrix Theory in Mathematics.” arXiv:1512.09229 [math-Ph], December 31, 2015. http://arxiv.org/abs/1512.09229. | ||
* https://terrytao.wordpress.com/2013/02/08/the-harish-chandra-itzykson-zuber-integral-formula/ | * https://terrytao.wordpress.com/2013/02/08/the-harish-chandra-itzykson-zuber-integral-formula/ | ||
* Zhang, Lin. “Volumes of Orthogonal Groups and Unitary Groups.” arXiv:1509.00537 [math-Ph, Physics:quant-Ph], September 1, 2015. http://arxiv.org/abs/1509.00537. | * Zhang, Lin. “Volumes of Orthogonal Groups and Unitary Groups.” arXiv:1509.00537 [math-Ph, Physics:quant-Ph], September 1, 2015. http://arxiv.org/abs/1509.00537. |
2016년 1월 1일 (금) 02:31 판
expositions
- Diaconis, Persi, and Peter J. Forrester. “A. Hurwitz and the Origins of Random Matrix Theory in Mathematics.” arXiv:1512.09229 [math-Ph], December 31, 2015. http://arxiv.org/abs/1512.09229.
- https://terrytao.wordpress.com/2013/02/08/the-harish-chandra-itzykson-zuber-integral-formula/
- Zhang, Lin. “Volumes of Orthogonal Groups and Unitary Groups.” arXiv:1509.00537 [math-Ph, Physics:quant-Ph], September 1, 2015. http://arxiv.org/abs/1509.00537.
- Bernardoni, Fabio, Sergio L. Cacciatori, Bianca L. Cerchiai, and Antonio Scotti. “Mapping the Geometry of the E6 Group.” Journal of Mathematical Physics 49, no. 1 (2008): 012107. doi:10.1063/1.2830522.
- Boya, Luis J., E. C. G. Sudarshan, and Todd Tilma. “Volumes of Compact Manifolds.” Reports on Mathematical Physics 52, no. 3 (December 2003): 401–22. doi:10.1016/S0034-4877(03)80038-1. http://arxiv.org/abs/math-ph/0210033v3
articles
- Shu, Fu-Wen, and You-Gen Shen. “Several Integrals of Quaternionic Field on Hyperbolic Matrix Space.” arXiv:1511.01385 [gr-Qc, Physics:math-Ph], November 4, 2015. http://arxiv.org/abs/1511.01385.
- Hashimoto, Y. “On Macdonald’s Formula for the Volume of a Compact Lie Group.” Commentarii Mathematici Helvetici 72, no. 4 (April 3, 2014): 660–62. doi:10.1007/s000140050040.
- Macdonald, I. G. “The Volume of a Compact Lie Group.” Inventiones Mathematicae 56, no. 2 (February 1980): 93–95. doi:10.1007/BF01392542.
- Itzykson, C., and J. B. Zuber. “The Planar Approximation. II.” Journal of Mathematical Physics 21, no. 3 (1980): 411–21. doi:10.1063/1.524438.