Volume of a compact Lie group

수학노트
둘러보기로 가기 검색하러 가기

introduction

  • Define \(J_\lambda(x)= h(\lambda)^{-1}\det(e^{\lambda_i x_j})\), where \( h(\lambda)=\prod_{i<j}(\lambda_i-\lambda_j)\).
  • For each \(x\), \(J_\lambda(x)\) is an analytic function of \(\lambda\); in particular, \(J_0(x)=\left(\prod_{j=1}^{n-1} j!\right) h(x)\).
  • The functions \(J_\lambda(x)\) play a central role in random matrix theory.
  • For example, if \(\Lambda\) and \(X\) are Hermitian matrices with eigenvalues given by \(\lambda\) and \(x\), respectively, then

\begin{equation}\label{iz} \int_{U(n)}e^{\rm tr \Lambda U X U^*} dU=\frac{J_\lambda(x)}{J_0(x)}, \end{equation} where the integral is with respect to normalised Haar measure on the unitary group.

  • This is known as the Harish-Chandra, or Itzykson-Zuber, formula.


related items


expositions

articles

  • Shu, Fu-Wen, and You-Gen Shen. “Several Integrals of Quaternionic Field on Hyperbolic Matrix Space.” arXiv:1511.01385 [gr-Qc, Physics:math-Ph], November 4, 2015. http://arxiv.org/abs/1511.01385.
  • Hashimoto, Y. “On Macdonald’s Formula for the Volume of a Compact Lie Group.” Commentarii Mathematici Helvetici 72, no. 4 (April 3, 2014): 660–62. doi:10.1007/s000140050040.
  • Macdonald, I. G. “The Volume of a Compact Lie Group.” Inventiones Mathematicae 56, no. 2 (February 1980): 93–95. doi:10.1007/BF01392542.
  • Itzykson, C., and J. B. Zuber. “The Planar Approximation. II.” Journal of Mathematical Physics 21, no. 3 (1980): 411–21. doi:10.1063/1.524438.