"Compact Kähler manifolds"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==examples==
 
==examples==
 
* [[K3 surfaces]]
 
* [[K3 surfaces]]
 
+
* [[Calabi-Yau manifold]]
  
 
==cohomology theory==
 
==cohomology theory==

2012년 12월 4일 (화) 15:48 판

examples

cohomology theory

  • compact Kähler manifold of dimension n
  • Dolbeault cohomology
  • $h^{p,q}=\operatorname{dim} H^{p,q}(X)$
  • $h^{p,q}=h^{q,p}$
  • Serre duality $h^{p,q}=h^{n-p,n-q}$


Hodge decomposition theorem

  • Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition

$$ H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M) $$ Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$.