"Compact Kähler manifolds"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
2번째 줄: | 2번째 줄: | ||
* Hermitian complex manifold $M$ equipped with a closed Kähler from $\omega$, i.e., $d\omega=0$ | * Hermitian complex manifold $M$ equipped with a closed Kähler from $\omega$, i.e., $d\omega=0$ | ||
* $\omega=-2ih_{\alpha\overline{\beta}}dz^{\alpha}dz^{\overline{\beta}}$ | * $\omega=-2ih_{\alpha\overline{\beta}}dz^{\alpha}dz^{\overline{\beta}}$ | ||
+ | * The Ricci form is one of the most important objects on a Kahler manifold | ||
2013년 6월 3일 (월) 22:53 판
introduction
- Hermitian complex manifold $M$ equipped with a closed Kähler from $\omega$, i.e., $d\omega=0$
- $\omega=-2ih_{\alpha\overline{\beta}}dz^{\alpha}dz^{\overline{\beta}}$
- The Ricci form is one of the most important objects on a Kahler manifold
dimension 1 case
- $h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h$
- $\omega=-2ih\,dz d\overline{z}$
- for $\mathbb{P}^{1}$,
$$ \omega=\frac{-i}{2\pi}\frac{dz d\bar{z}}{(1+|z|^2)^2} $$ see Chern class
examples
cohomology theory
- compact Kähler manifold of dimension n
- Dolbeault cohomology
- $h^{p,q}=\operatorname{dim} H^{p,q}(X)$
- $h^{p,q}=h^{q,p}$
- Serre duality $h^{p,q}=h^{n-p,n-q}$
Hodge decomposition theorem
- Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition
$$ H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M) $$ Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$.