"Compact Kähler manifolds"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
14번째 줄: | 14번째 줄: | ||
− | ==dimension 1 case== | + | ==examples== |
+ | ====flat matric==== | ||
+ | * $h_{\alpha\overline{\beta}}=\frac{1}{2}\delta_{\alpha\beta}$ | ||
+ | * $\Omega=\frac{i}{2}\sum_{\alpha=1}^m dz_{\alpha}\wedge d\bar{z}_{\alpha}$ | ||
+ | * potential $u(z)=\frac{1}{2}|z|^2$ | ||
+ | |||
+ | ====dimension 1 case==== | ||
* $h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h$ | * $h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h$ | ||
* $\omega=-2ih\,dz d\overline{z}$ | * $\omega=-2ih\,dz d\overline{z}$ | ||
25번째 줄: | 31번째 줄: | ||
− | == | + | ====etc==== |
* [[Chern class|complex projective line]] | * [[Chern class|complex projective line]] | ||
* [[K3 surfaces]] | * [[K3 surfaces]] |
2013년 6월 3일 (월) 23:15 판
introduction
- A Hermitian metric $h$ on a complex manifold $(M^{2m},J)$ : $h(X,Y)=h(JX,JY)$
- fundamental 2-form (or Kähler form) $(1,1)$-form given by $\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}$
- If $\Omega$ is closed, i.e., $d\Omega=0$, we call $h$ a Kahler metric
- there exists a real function $u$ such that $\Omega=i\partial \overline{\partial} u$, which we call the Kahler potential
- The Ricci form is one of the most important objects on a Kahler manifold
Hermitian metric on a complex manifold
- Let $h$ be a Hermitian metric and the coefficient
$$ h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}) $$
examples
flat matric
- $h_{\alpha\overline{\beta}}=\frac{1}{2}\delta_{\alpha\beta}$
- $\Omega=\frac{i}{2}\sum_{\alpha=1}^m dz_{\alpha}\wedge d\bar{z}_{\alpha}$
- potential $u(z)=\frac{1}{2}|z|^2$
dimension 1 case
- $h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h$
- $\omega=-2ih\,dz d\overline{z}$
- for $\mathbb{P}^{1}$,
$$ \omega=\frac{-i}{2\pi}\frac{dz \wedge d\bar{z}}{(1+|z|^2)^2} $$ see Chern class
etc
cohomology theory
- compact Kähler manifold of dimension n
- Dolbeault cohomology
- $h^{p,q}=\operatorname{dim} H^{p,q}(X)$
- $h^{p,q}=h^{q,p}$
- Serre duality $h^{p,q}=h^{n-p,n-q}$
Hodge decomposition theorem
- Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition
$$ H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M) $$ Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$.