"Gauge theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==meaning of the gague invariance</h5>
+
==meaning of the gague invariance==
  
 
* gauge = measure
 
* gauge = measure
9번째 줄: 9번째 줄:
 
 
 
 
  
==gauge field</h5>
+
==gauge field==
  
 
*  a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one<br>
 
*  a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one<br>
19번째 줄: 19번째 줄:
 
 
 
 
  
==Gauge invariance of the QED Lagrangian</h5>
+
==Gauge invariance of the QED Lagrangian==
  
 
<math>\mathcal{L} =  \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} -e\bar{\psi}\gamma^\mu \psi A_\mu</math>
 
<math>\mathcal{L} =  \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} -e\bar{\psi}\gamma^\mu \psi A_\mu</math>
33번째 줄: 33번째 줄:
 
 
 
 
  
==gauge field tensor</h5>
+
==gauge field tensor==
  
 
*  electromagnetic field tensor  <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math><br>
 
*  electromagnetic field tensor  <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math><br>
42번째 줄: 42번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">examples of renormalizable gauge theory</h5>
+
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">examples of renormalizable gauge theory==
  
 
* [[QED]]<br>
 
* [[QED]]<br>
52번째 줄: 52번째 줄:
 
 
 
 
  
==Abelian gauge theory</h5>
+
==Abelian gauge theory==
  
 
* abelian gauge theory has a duality
 
* abelian gauge theory has a duality
60번째 줄: 60번째 줄:
 
 
 
 
  
==Non-Abelian gauge theory</h5>
+
==Non-Abelian gauge theory==
  
 
* [[Yang-Mills Theory(Non-Abelian gauge theory)|Yang-Mills Theory]]
 
* [[Yang-Mills Theory(Non-Abelian gauge theory)|Yang-Mills Theory]]
68번째 줄: 68번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">differential geometry formulation</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">differential geometry formulation==
  
 
*  manifold <math>\mathbb R^{1,3}</math> and having a vector bundle gives a connection<br>
 
*  manifold <math>\mathbb R^{1,3}</math> and having a vector bundle gives a connection<br>
79번째 줄: 79번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">Principal G-bundle</h5>
+
<h5 style="margin: 0px; line-height: 2em;">Principal G-bundle==
  
 
* [[principal bundles]]<br>
 
* [[principal bundles]]<br>
90번째 줄: 90번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">3d Chern-Simons theory</h5>
+
<h5 style="margin: 0px; line-height: 2em;">3d Chern-Simons theory==
  
 
*  3d Chern-Simons theory on <math>\Sigma\times \mathbb R^{1}</math> with gauge choice <math>A_0=0</math> is the moduli space of flat connections on <math>\Sigma</math>.<br>
 
*  3d Chern-Simons theory on <math>\Sigma\times \mathbb R^{1}</math> with gauge choice <math>A_0=0</math> is the moduli space of flat connections on <math>\Sigma</math>.<br>
102번째 줄: 102번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">메모</h5>
+
<h5 style="margin: 0px; line-height: 2em;">메모==
  
 
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]<br>
 
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]<br>
111번째 줄: 111번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items==
  
 
* [[differential geometry and topology|differential geometry]]<br>
 
* [[differential geometry and topology|differential geometry]]<br>
119번째 줄: 119번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">encyclopedia</h5>
+
<h5 style="margin: 0px; line-height: 2em;">encyclopedia==
  
 
* http://en.wikipedia.org/wiki/principal_bundle
 
* http://en.wikipedia.org/wiki/principal_bundle
128번째 줄: 128번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books==
  
 
* The Geometry of Physics: An Introduction
 
* The Geometry of Physics: An Introduction
138번째 줄: 138번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">expositions</h5>
+
<h5 style="margin: 0px; line-height: 2em;">expositions==
  
 
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf On the Origins of Gauge Theory] , Callum Quigley, April 14, 2003<br>
 
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf On the Origins of Gauge Theory] , Callum Quigley, April 14, 2003<br>
150번째 줄: 150번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
  
 
* [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial] Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[http://www.zentralblatt-math.org/zmath/en/ ]
 
* [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial] Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[http://www.zentralblatt-math.org/zmath/en/ ]

2012년 10월 28일 (일) 15:27 판

meaning of the gague invariance

  • gauge = measure
  • gauge invariance = measurement에 있어서의 invariance를 말함
  • Lagrangian should be gauge invariant.

 

 

gauge field

  • a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one
  • one example is the electromagnetic field

 

 

Gauge invariance of the QED Lagrangian

\(\mathcal{L} = \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} -e\bar{\psi}\gamma^\mu \psi A_\mu\)

Now we have a Lagrangian with interaction terms.

  • local phase transformation of fields
    \(\psi(x) \to e^{i\alpha(x)}\psi(x)\)
  • gauge transformation of electromagnetic field
    \(A_{\mu}(x) \to A_{\mu}(x)+\frac{1}{e}\partial_{\mu}\alpha(x)}\)
  • Look at the QED page

 

 

gauge field tensor

  • electromagnetic field tensor  \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\)
  • general gauge fields tensor  \(G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}\)

 

 

examples of renormalizable gauge theory==    

Abelian gauge theory

  • abelian gauge theory has a duality

 

 

Non-Abelian gauge theory

 

 

differential geometry formulation==
  • manifold \(\mathbb R^{1,3}\) and having a vector bundle gives a connection
  • connection \(A\) = special kind of 1-form 
  • \(dA\) = 2-form which measures the electromagnetic charge
  • Then the Chern class measures the magnetic charge.
   
Principal G-bundle==      
3d Chern-Simons theory==
  • 3d Chern-Simons theory on \(\Sigma\times \mathbb R^{1}\) with gauge choice \(A_0=0\) is the moduli space of flat connections on \(\Sigma\).
  • analogy with class field theory
  • replace \(\Sigma\) by \(spec O_K\)
  • then flat connection on \(spec O_K\) is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)
  • Now from An's article, 
   
메모==    
related items==    
encyclopedia==    
books==
  • The Geometry of Physics: An Introduction
  • An elementary primer for gauge theory
  • 찾아볼 수학책
   
expositions==    
articles==