"Classical field theory and classical mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 classical field theory and classical mechanics로 바꾸었습니다.)
5번째 줄: 5번째 줄:
 
* require the invariance of action integral over arbitrary region
 
* require the invariance of action integral over arbitrary region
 
* this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity
 
* this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity
 +
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">notation</h5>
 +
 +
* <math>T</math> kinetic energy<br>
 +
* <math>V</math> potential energy<br>
 +
*  We have Lagrangian <math>L=T-V</math><br>
 +
*  Define the Hamiltonian<br>
 +
* <math>H =p\dot q-L</math><br>
 +
* <math>p\dot q</math> is twice of kinetic energy<br>
 +
*  Thus the Hamiltonian represents <math>H=T+V</math> the total energy of the system<br>
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">action</h5>
 +
 +
*  functional which takes a trajectory(history or path) to a number<br><math>\mathcal{S} = \int L\, \mathrm{d}t</math><br>
 +
*  applying Hamilton's action principle gives rise to a equation of motion<br><math>{\partial L\over\partial q} - {\mathrm{d}\over \mathrm{d}t }{\partial L\over\partial \dot{q}} = 0</math><br>
 +
*  mass particle<br><math>L(q,\dot{q})=T-V=\frac{1}{2}m{\dot{q}}^2-V(q)</math><br><math>{\partial L\over\partial q} - {\mathrm{d}\over \mathrm{d}t }{\partial L\over\partial \dot{q}} = 0</math> becomes <br><math>\mathcal{S} = \int_{t_0}^{t_1} L(q,\dot{q}) \,dt</math><br>
  
 
 
 
 
25번째 줄: 51번째 줄:
  
 
 
 
 
 +
 +
 
 +
 +
<h5>currents</h5>
 +
 +
* quantum analogues of the conserved densities arising by Noether's theorem
 +
* due to the close relation to observable quantities, they behave similarly to free fields forming the current algebra
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">Lagrangian mechanics</h5>
 +
 +
From Lagrangian we obtain the conjugate momentum variable
 +
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">Hamiltonian mechanics</h5>
 +
 +
conjugate variables are on the equal footing
  
 
 
 
 
30번째 줄: 83번째 줄:
 
 
 
 
  
<h5>currents</h5>
+
<h5 style="margin: 0px; line-height: 2em;">Poisson bracket</h5>
 +
 
 +
For <math>f(p_i,q_i,t), g(p_i,q_i,t)</math> , we define the Poisson bracket
 +
 
 +
<math>\{f,g\} = \sum_{i=1}^{N} \left[  \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]</math>
 +
 
 +
In quantization we have correspondence
 +
 
 +
<math>\{f,g\} = \frac{1}{i}[u,v]</math>
 +
 
 +
 
 +
 
 +
 
  
* quantum analogues of the conser
+
<h5 style="margin: 0px; line-height: 2em;">phase space</h5>
  
 
 
 
 
38번째 줄: 103번째 줄:
 
 
 
 
  
<h5>history</h5>
+
<h5 style="margin: 0px; line-height: 2em;">canonically conjugate momentum</h5>
 +
 
 +
 
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
 
  
 
 
 
 
46번째 줄: 113번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
 
  
* [[Electromagnetics|Electromagnetism]]
+
[http://www.astro.caltech.edu/%7Egolwala/ph106ab/ph106ab_notes.pdf http://www.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf]
  
 
 
 
 
54번째 줄: 121번째 줄:
 
 
 
 
  
<h5>books</h5>
+
<h5>history</h5>
 +
 
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
 
 +
 
  
 
 
 
 
  
* [[4909919|찾아볼 수학책]]<br>
+
<h5>related items</h5>
* http://gigapedia.info/1/
+
 
* http://gigapedia.info/1/
+
* [[Electromagnetics|Electromagnetism]]
* http://gigapedia.info/1/
+
* [[symplectic geometry|sympletic geometry]]
* http://gigapedia.info/1/
+
* [[5 integrable systems and solvable models|integrable Hamiltonian systems and solvable models]]
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
+
 
 +
 
  
 
 
 
 
74번째 줄: 146번째 줄:
 
* http://en.wikipedia.org/wiki/current_density
 
* http://en.wikipedia.org/wiki/current_density
 
* [http://en.wikipedia.org/wiki/Noether%27s_theorem http://en.wikipedia.org/wiki/Noether's_theorem]
 
* [http://en.wikipedia.org/wiki/Noether%27s_theorem http://en.wikipedia.org/wiki/Noether's_theorem]
 +
 +
* [http://ko.wikipedia.org/wiki/%EC%9E%91%EC%9A%A9 http://ko.wikipedia.org /wiki/작용]
 +
* http://en.wikipedia.org/wiki/Canonical_coordinates
 +
* http://en.wikipedia.org/wiki/Lagrangian_mechanics
 +
* http://en.wikipedia.org/wiki/Lagrangian
 +
* http://en.wikipedia.org/wiki/poisson_bracket
 +
* [http://en.wikipedia.org/wiki/Action_%28physics%29 http://en.wikipedia.org/wiki/Action_(physics)]
 +
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
82번째 줄: 162번째 줄:
 
 
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
<h5>books</h5>
  
* http://mathoverflow.net/search?q=
+
* Classical mechanics [[2610572/attachments/1142452|Classical_Mechanics.djvu]]<br>
* http://mathoverflow.net/search?q=
+
** V.I. Arnold
* http://mathoverflow.net/search?q=
 
  
 
+
* [[2010년 books and articles]]<br>
 
+
* http://gigapedia.info/1/
 
+
* http://gigapedia.info/1/
 
+
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
<h5>blogs</h5>
 
 
 
* 구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
  
 
 
 
 
103번째 줄: 176번째 줄:
 
 
 
 
  
<h5>articles</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103);">articles</h5>
  
 
 
 
 
  
* [[2010년 books and articles|논문정리]]
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=ALLF&s4=
 
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://www.zentralblatt-math.org/zmath/en/
116번째 줄: 187번째 줄:
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 
* http://dx.doi.org/
 +
 +
 
 +
 +
 
 +
 +
<h5>question and answers(Math Overflow)</h5>
 +
 +
* http://mathoverflow.net/search?q=
 +
* http://mathoverflow.net/search?q=
 +
 +
 
 +
 +
 
 +
 +
<h5>blogs</h5>
 +
 +
*  구글 블로그 검색<br>
 +
** http://blogsearch.google.com/blogsearch?q=
 +
** http://blogsearch.google.com/blogsearch?q=
  
 
 
 
 
129번째 줄: 219번째 줄:
 
 
 
 
  
<h5>TeX </h5>
+
<h5>links</h5>
 +
 
 +
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 +
* [http://pythagoras0.springnote.com/pages/1947378 수식표 현 안내]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
* http://functions.wolfram.com/

2010년 4월 14일 (수) 07:42 판

introduction
  • can be formulated using classical fields and lagrangian density
  • change the coordinates and fields accordingly
  • require the invariance of action integral over arbitrary region
  • this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity

 

 

notation
  • \(T\) kinetic energy
  • \(V\) potential energy
  • We have Lagrangian \(L=T-V\)
  • Define the Hamiltonian
  • \(H =p\dot q-L\)
  • \(p\dot q\) is twice of kinetic energy
  • Thus the Hamiltonian represents \(H=T+V\) the total energy of the system

 

 

 

action
  • functional which takes a trajectory(history or path) to a number
    \(\mathcal{S} = \int L\, \mathrm{d}t\)
  • applying Hamilton's action principle gives rise to a equation of motion
    \({\partial L\over\partial q} - {\mathrm{d}\over \mathrm{d}t }{\partial L\over\partial \dot{q}} = 0\)
  • mass particle
    \(L(q,\dot{q})=T-V=\frac{1}{2}m{\dot{q}}^2-V(q)\)
    \({\partial L\over\partial q} - {\mathrm{d}\over \mathrm{d}t }{\partial L\over\partial \dot{q}} = 0\) becomes 
    \(\mathcal{S} = \int_{t_0}^{t_1} L(q,\dot{q}) \,dt\)

 

 

Euler-Lagrange equation
  • if field satisfies the equation of motion, EL is satisfied
    \(\partial_\mu \left( \frac{\partial \mathcal{L}}{\partial ( \partial_\mu \psi )} \right) - \frac{\partial \mathcal{L}}{\partial \psi} = 0.\)

 

 

equation of continuity
  • current density \(J_{\mu}=(J_0,J_1,J_2,J_3)\) satisfies
    \(\partial^{\mu} J_{\mu}=0\)
  • we get a conserved quantity
    \(G=\int_V J_0(x) \,d^3 x\)
  • Lagrangian can be used to express the current density explicity

 

 

currents
  • quantum analogues of the conserved densities arising by Noether's theorem
  • due to the close relation to observable quantities, they behave similarly to free fields forming the current algebra

 

 

 

 

Lagrangian mechanics

From Lagrangian we obtain the conjugate momentum variable

 

 

Hamiltonian mechanics

conjugate variables are on the equal footing

 

 

Poisson bracket

For \(f(p_i,q_i,t), g(p_i,q_i,t)\) , we define the Poisson bracket

\(\{f,g\} = \sum_{i=1}^{N} \left[ \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]\)

In quantization we have correspondence

\(\{f,g\} = \frac{1}{i}[u,v]\)

 

 

phase space

 

 

canonically conjugate momentum

 

 

 

 

 

http://www.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links