"Classical field theory and classical mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction</h5>
  
 
* can be formulated using classical fields and Lagrangian density
 
* can be formulated using classical fields and Lagrangian density
29번째 줄: 29번째 줄:
 
 
 
 
  
<h5>Lagrangian formalism</h5>
+
==Lagrangian formalism</h5>
  
 
* [[Lagrangian formalism]]
 
* [[Lagrangian formalism]]
101번째 줄: 101번째 줄:
 
 
 
 
  
<h5>links and webpages</h5>
+
==links and webpages</h5>
  
 
* [http://www.astro.caltech.edu/%7Egolwala/ph106ab/ph106ab_notes.pdf ][http://www.astro.caltech.edu/%7Egolwala/ph106ab/ph106ab_notes.pdf http://www.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf]
 
* [http://www.astro.caltech.edu/%7Egolwala/ph106ab/ph106ab_notes.pdf ][http://www.astro.caltech.edu/%7Egolwala/ph106ab/ph106ab_notes.pdf http://www.astro.caltech.edu/~golwala/ph106ab/ph106ab_notes.pdf]
109번째 줄: 109번째 줄:
 
 
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)</h5>
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
121번째 줄: 121번째 줄:
 
 
 
 
  
<h5>history</h5>
+
==history</h5>
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
129번째 줄: 129번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
==related items</h5>
  
 
* [[Electromagnetics|Electromagnetism]]
 
* [[Electromagnetics|Electromagnetism]]
140번째 줄: 140번째 줄:
 
 
 
 
  
<h5>encyclopedia</h5>
+
==encyclopedia</h5>
  
 
* http://en.wikipedia.org/wiki/Classical_field_theory
 
* http://en.wikipedia.org/wiki/Classical_field_theory
162번째 줄: 162번째 줄:
 
 
 
 
  
<h5>books</h5>
+
==books</h5>
  
 
*   <br>
 
*   <br>
173번째 줄: 173번째 줄:
 
 
 
 
  
<h5>expositions</h5>
+
==expositions</h5>
  
 
* Benci V. Fortunato D., Solitary waves in classical field theory, in Nonlinear Analysis and Applications to Physical Sciences
 
* Benci V. Fortunato D., Solitary waves in classical field theory, in Nonlinear Analysis and Applications to Physical Sciences

2012년 10월 28일 (일) 13:55 판

==introduction

  • can be formulated using classical fields and Lagrangian density
  • change the coordinates and fields accordingly
  • require the invariance of action integral over arbitrary region
  • this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity
  • three important conserved quantity
    • energy
    • momentum
    • angular momentum

 

 

notation
  • dynamical variables \(q_{k}, \dot{q}_k\) for \(k=1,\cdots, N\)
  • \(T\) kinetic energy
  • \(V\) potential energy
  • We have Lagrangian \(L=T-V\)
  • Define the Hamiltonian
  • \(H =\sum_{k=1}^{N} p_{k}\dot{q}_{k}-L\)
  • \(p\dot q\) is twice of kinetic energy
  • Thus the Hamiltonian represents \(H=T+V\) the total energy of the system

 

 

==Lagrangian formalism

 

 

canonically conjugate momentum
  • canonically conjugate momenta
    \(p_{k}=\frac{\partial L}{\partial \dot{q}_k}\)
  • instead of \(q_{k}, \dot{q}_k\), one can use \(q_{k}, p_{k}\) as dynamical variables

 

 

 

Hamiltonian mechanics

 

 

 

Poisson bracket

For \(f(p_i,q_i,t), g(p_i,q_i,t)\) , we define the Poisson bracket

\(\{f,g\} = \sum_{i=1}^{N} \left[ \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]\)

In quantization we have correspondence

\(\{f,g\} = \frac{1}{i}[u,v]\)

 

 

phase space

 

 

하위페이지

 

 

 

==links and webpages

 

==question and answers(Math Overflow)

 

 

 

==history

 

 

==related items

 

 

==encyclopedia

 

 

==books

 

 

==expositions

  • Benci V. Fortunato D., Solitary waves in classical field theory, in Nonlinear Analysis and Applications to Physical Sciences