"라그랑지의 네 제곱수 정리"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| 4번째 줄: | 4번째 줄: | ||
*  1770년 라그랑지에 의해 증명  | *  1770년 라그랑지에 의해 증명  | ||
| − | + | ||
| − | + | ||
==예==  | ==예==  | ||
| 14번째 줄: | 14번째 줄: | ||
* <math>310 = 17^2 + 4^2 + 2^2 + 1^2</math>  | * <math>310 = 17^2 + 4^2 + 2^2 + 1^2</math>  | ||
| − | + | ||
| − | + | ||
| − | ==자코비의   | + | ==자코비의 네 제곱수 정리==  | 
*  라그랑지의 정리가 단지 가능하다는 결과라면, 자코비의 정리는 몇 가지의 방법으로 나타낼 수 있는지에 대한 결과  | *  라그랑지의 정리가 단지 가능하다는 결과라면, 자코비의 정리는 몇 가지의 방법으로 나타낼 수 있는지에 대한 결과  | ||
| − | * <math>x_1^2+x_2^2+x_3^2+x_4^2=n</math>의   | + | * <math>x_1^2+x_2^2+x_3^2+x_4^2=n</math>의 정수해 <math>(x_1,x_2,x_3,x_4)</math>의 개수, 즉 자연수 <math>n</math>을 네 정수의 제곱의 합으로 쓰는 방법의 수  <math>r_4(n)</math>에 대한 정리:<math>r_4(n)=8\sum_{m|n,4\nmid m}m</math>  | 
| − | * [[자코비의 네 제곱수 정리]]  | + | * [[자코비의 네 제곱수 정리]] 항목 참조  | 
| − | + | ||
| − | + | ||
==역사==  | ==역사==  | ||
| 34번째 줄: | 34번째 줄: | ||
* [[수학사 연표]]  | * [[수학사 연표]]  | ||
| − | + | ||
| − | + | ||
==메모==  | ==메모==  | ||
| − | + | ||
| − | + | ||
==관련된 항목들==  | ==관련된 항목들==  | ||
| 48번째 줄: | 48번째 줄: | ||
* [[자코비 세타함수]]  | * [[자코비 세타함수]]  | ||
| − | + | ||
| − | + | ||
==수학용어번역==  | ==수학용어번역==  | ||
| 57번째 줄: | 57번째 줄: | ||
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]  | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]  | ||
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=  | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=  | ||
| − | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4   | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]  | 
| − | + | ||
| − | + | ||
| − | ==사전   | + | ==사전 형태의 자료==  | 
* [http://ko.wikipedia.org/wiki/%EB%84%A4%EC%A0%9C%EA%B3%B1%EC%88%98_%EC%A0%95%EB%A6%AC http://ko.wikipedia.org/wiki/네제곱수_정리]  | * [http://ko.wikipedia.org/wiki/%EB%84%A4%EC%A0%9C%EA%B3%B1%EC%88%98_%EC%A0%95%EB%A6%AC http://ko.wikipedia.org/wiki/네제곱수_정리]  | ||
| 75번째 줄: | 75번째 줄: | ||
** http://www.research.att.com/~njas/sequences/?q=  | ** http://www.research.att.com/~njas/sequences/?q=  | ||
| − | + | ||
| − | + | ||
==관련논문==  | ==관련논문==  | ||
| 84번째 줄: | 84번째 줄: | ||
* http://dx.doi.org/  | * http://dx.doi.org/  | ||
| − | + | ||
| − | + | ||
| − | + | ||
| − | + | ||
==블로그==  | ==블로그==  | ||
2020년 12월 28일 (월) 02:15 판
개요
- 모든 자연수는 네 개의 제곱수의 합으로 표현가능하다
 - 1770년 라그랑지에 의해 증명
 
 
 
예
- \(3 = 1^2 + 1^2 + 1^2 + 0^2\)
 - \(31 = 5^2 + 2^2 + 1^2 + 1^2\)
 - \(310 = 17^2 + 4^2 + 2^2 + 1^2\)
 
 
 
자코비의 네 제곱수 정리
- 라그랑지의 정리가 단지 가능하다는 결과라면, 자코비의 정리는 몇 가지의 방법으로 나타낼 수 있는지에 대한 결과
 - \(x_1^2+x_2^2+x_3^2+x_4^2=n\)의 정수해 \((x_1,x_2,x_3,x_4)\)의 개수, 즉 자연수 \(n\)을 네 정수의 제곱의 합으로 쓰는 방법의 수 \(r_4(n)\)에 대한 정리\[r_4(n)=8\sum_{m|n,4\nmid m}m\]
 - 자코비의 네 제곱수 정리 항목 참조
 
 
 
역사
- 1770년 라그랑지가 증명
 
 
 
메모
관련된 항목들
 
 
수학용어번역
 
 
사전 형태의 자료
- http://ko.wikipedia.org/wiki/네제곱수_정리
 - http://en.wikipedia.org/wiki/four_square_theorem
 - http://en.wikipedia.org/wiki/15_and_290_theorems
 - http://en.wikipedia.org/wiki/Jacobi's_four-square_theorem
 - http://en.wikipedia.org/wiki/
 - http://www.wolframalpha.com/input/?i=
 - NIST Digital Library of Mathematical Functions
 - The On-Line Encyclopedia of Integer Sequences
 
 
 
관련논문