"데데킨트 제타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎노트: 새 문단)
126번째 줄: 126번째 줄:
 
* [{'LOWER': 'dedekind'}, {'LOWER': 'zeta'}, {'LEMMA': 'function'}]
 
* [{'LOWER': 'dedekind'}, {'LOWER': 'zeta'}, {'LEMMA': 'function'}]
 
* [{'LOWER': 'dedekind'}, {'LOWER': "'s"}, {'LOWER': 'zeta'}, {'LEMMA': 'function'}]
 
* [{'LOWER': 'dedekind'}, {'LOWER': "'s"}, {'LOWER': 'zeta'}, {'LEMMA': 'function'}]
 +
 +
== 노트 ==
 +
 +
===말뭉치===
 +
# In particular some of these pairs have different class numbers, so the Dedekind zeta function of a number field does not determine its class number.<ref name="ref_ca3cd66b">[https://en.wikipedia.org/wiki/Dedekind_zeta_function Dedekind zeta function]</ref>
 +
# For K K a number field then all special values of the Dedekind zeta function ζ K ( n ) \zeta_K(n) for integer n n happen to be periods (MO comment).<ref name="ref_8e168495">[https://ncatlab.org/nlab/show/Dedekind+zeta+function Dedekind zeta function in nLab]</ref>
 +
# Just like the Riemann zeta function, each Dedekind zeta function possesses a functional equation.<ref name="ref_96a08161">[https://www.theochem.ru.nl/~pwormer/Knowino/knowino.org/wiki/Dedekind_zeta_function.html Dedekind zeta function]</ref>
 +
# The nontrivial zeros of the Dedekind zeta function of any algebraic number eld lie on the critical line: Re(s) = 1/2.<ref name="ref_e51d5cc2">[http://archive.schools.cimpa.info/archivesecoles/20171023105958/PV-lecture2.pdf Introduction to l-functions:]</ref>
 +
# Theorem Let X be a group of Dirichlet characters, K the associated eld, and K (s) the Dedekind zeta function of K .<ref name="ref_e51d5cc2" />
 +
# From there, we discuss algebraic number elds and introduce the tools needed to dene the Dedekind zeta function.<ref name="ref_d04421dc">[https://math.uchicago.edu/~may/REU2016/REUPapers/Baidoo.pdf Dirichlet l-functions and dedekind ζ-functions]</ref>
 +
# 1 2 FRIMPONG A. BAIDOO necessary for providing context to the Dedekind zeta function.<ref name="ref_d04421dc" />
 +
# In section 9, we then dene the Dedekind zeta function, describe the ideal class group and then highlight the Dedekind zeta functions role in the class number formula.<ref name="ref_d04421dc" />
 +
# I was trying to learn a little about the Dedekind zeta function.<ref name="ref_c73b2fb0">[https://math.stackexchange.com/questions/33006/relation-between-the-dedekind-zeta-function-and-quadratic-reciprocity Relation between the Dedekind Zeta Function and Quadratic Reciprocity]</ref>
 +
# For a cubic extension K 3 /ℚ, which is not normal, new results on the behavior of mean values of the Dedekind zeta function of the field K 3 in the critical strip are obtained.<ref name="ref_2c7bf667">[https://link.springer.com/article/10.1007/s10958-008-0126-9 Mean values connected with the Dedekind zeta function]</ref>
 +
# We study analytic aspects of the Dedekind zeta function of a Galois extension.<ref name="ref_2aacc359">[https://core.ac.uk/download/pdf/18451908.pdf Moments of the dedekind zeta function]</ref>
 +
# In the rst part of this thesis we give a formula for the second moment of the Dedekind zeta function of a quadratic eld times an arbitrary Dirichlet polynomial of length T 1/11(cid:15).<ref name="ref_2aacc359" />
 +
# In the second part, we derive a hybrid Euler-Hadamard product for the Dedekind zeta function of an arbitrary number eld.<ref name="ref_2aacc359" />
 +
# We then conjecture that the 2kth moment of the Dedekind zeta function of a Galois extension is given by the product of the two.<ref name="ref_2aacc359" />
 +
===소스===
 +
<references />

2021년 2월 26일 (금) 01:36 판

개요

  • 수체 \(K\)에 대하여, 데데킨트 제타함수는 다음과 같이 정의됨

\[\zeta_{K}(s):=\sum_{I \text{:ideals}}\frac{1}{N(I)^s}\]


기호

  • \(K\) 수체
  • \(C_K\) ideal class group


함수방정식

  • 리만제타함수 의 함수방정식\[\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)\]\[\xi(s) = \xi(1 - s)\]
  • 리만제타함수는 \(K=\mathbb{Q}\) 인 경우, 즉 \(\zeta(s)=\zeta_{\mathbb{Q}}(s)\)
  • 데데킨트 제타함수에 대해서 다음과 같은 함수방정식이 성립\[\xi_{K}(s)=\left|d_K\right|{}^{s/2} 2^{r_2 (1-s)} \pi ^{\frac{1}{2} \left(-r_1-2 r_2\right) s}\Gamma \left(\frac{s}{2}\right)^{r_1} \Gamma (s)^{r_2}\zeta _K(s)\]\[\xi_{K}(s) = \xi_{K}(1 - s)\]


디리클레 유수 공식

\[ \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_K\cdot R_K}{w_K \cdot \sqrt{|D_K|}}\]

  • \(s=0\) 에서 order 가 \(r_1+r_2-1\) 인 zero를 가지며 다음이 성립한다\[ \lim_{s\to 0}\frac{\zeta_K(s)}{s^{r_1+r_2-1}}=-\frac{h_K R_K}{w_K}\]



부분제타함수

  • 각각의 ideal class \(A\in C_K\) 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의\[\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}\]
  • 제타함수는 부분 데데킨트 제타함수의 합으로 쓰여지게 됨\[\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)\]
  • 더 일반적으로 준동형사상 \(\chi \colon C_K \to \mathbb C^{*}\)에 대하여, 일반화된 데데킨트 제타함수를 정의할 수 있음\[L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)\]





special values

클링겐-지겔 (Klingen-Siegel) 정리

\[\zeta_{F}(2m)=r(m)\frac{\pi^{2mn}}{\sqrt{|d_{F}|}}\]

Zagier, Bloch, Suslin

  • \([K : \mathbb{Q}] = r_1 + 2r_2\)일 때,

\[\zeta_{K}(2)\sim_{\mathbb{Q^{\times}}} \frac{\pi^{2(r_1 + r_2)}}{\sqrt{|d_{K}|}}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}\] 여기서 \(\xi_i,(i=1,\cdots, r_2)\) 는 Bloch group \(B(K)\otimes \mathbb{Q}\)의 \(\mathbb{Q}\)-basis D는 블로흐-비그너 다이로그(Bloch-Wigner dilogarithm) 함수이며, \(a\sim_{\mathbb{Q^{\times}}} b\) 는 \(a/b\in\mathbb{Q}\) 를 의미함



역사



메모



관련된 항목들


계산 리소스


사전 형태의 자료



리뷰, 에세이, 강의노트



관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'dedekind'}, {'LOWER': 'zeta'}, {'LEMMA': 'function'}]
  • [{'LOWER': 'dedekind'}, {'LOWER': "'s"}, {'LOWER': 'zeta'}, {'LEMMA': 'function'}]

노트

말뭉치

  1. In particular some of these pairs have different class numbers, so the Dedekind zeta function of a number field does not determine its class number.[1]
  2. For K K a number field then all special values of the Dedekind zeta function ζ K ( n ) \zeta_K(n) for integer n n happen to be periods (MO comment).[2]
  3. Just like the Riemann zeta function, each Dedekind zeta function possesses a functional equation.[3]
  4. The nontrivial zeros of the Dedekind zeta function of any algebraic number eld lie on the critical line: Re(s) = 1/2.[4]
  5. Theorem Let X be a group of Dirichlet characters, K the associated eld, and K (s) the Dedekind zeta function of K .[4]
  6. From there, we discuss algebraic number elds and introduce the tools needed to dene the Dedekind zeta function.[5]
  7. 1 2 FRIMPONG A. BAIDOO necessary for providing context to the Dedekind zeta function.[5]
  8. In section 9, we then dene the Dedekind zeta function, describe the ideal class group and then highlight the Dedekind zeta functions role in the class number formula.[5]
  9. I was trying to learn a little about the Dedekind zeta function.[6]
  10. For a cubic extension K 3 /ℚ, which is not normal, new results on the behavior of mean values of the Dedekind zeta function of the field K 3 in the critical strip are obtained.[7]
  11. We study analytic aspects of the Dedekind zeta function of a Galois extension.[8]
  12. In the rst part of this thesis we give a formula for the second moment of the Dedekind zeta function of a quadratic eld times an arbitrary Dirichlet polynomial of length T 1/11(cid:15).[8]
  13. In the second part, we derive a hybrid Euler-Hadamard product for the Dedekind zeta function of an arbitrary number eld.[8]
  14. We then conjecture that the 2kth moment of the Dedekind zeta function of a Galois extension is given by the product of the two.[8]

소스