"디리클레 베타함수"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5> |
* 디리클레 L-함수의 특별한 경우<br><math>\beta(s) = \sum_{n=0}^\infty \frac{(-1)^n} {(2n+1)^s} = \frac{1}{\Gamma(s)}\int_0^{\infty}\frac{t^{s-1}e^{-t}}{1 + e^{-2t}}\,dt=\frac{1}{2\Gamma(s)}\int_{0}^{\infty}\frac{1}{\cosh t}t^s \frac{\,dt}{t}</math><br> | * 디리클레 L-함수의 특별한 경우<br><math>\beta(s) = \sum_{n=0}^\infty \frac{(-1)^n} {(2n+1)^s} = \frac{1}{\Gamma(s)}\int_0^{\infty}\frac{t^{s-1}e^{-t}}{1 + e^{-2t}}\,dt=\frac{1}{2\Gamma(s)}\int_{0}^{\infty}\frac{1}{\cosh t}t^s \frac{\,dt}{t}</math><br> | ||
* 함수방정식<br><math>\Lambda(s)=(\frac{\pi}{4})^{-{(s+1)}/{2}}\Gamma(\frac{s+1}{2})\beta(s)</math> 라 두면<br><math>\Lambda(s)=\Lambda(1-s)</math> 를 만족<br> | * 함수방정식<br><math>\Lambda(s)=(\frac{\pi}{4})^{-{(s+1)}/{2}}\Gamma(\frac{s+1}{2})\beta(s)</math> 라 두면<br><math>\Lambda(s)=\Lambda(1-s)</math> 를 만족<br> | ||
+ | * [[#]]<br> | ||
− | + | <h5 style="margin: 0px; line-height: 2em;">Special values</h5> | |
− | |||
− | <h5 style=" | ||
* 아래에서 <math>E_n</math>은 [[오일러수]]를 뜻함.<br><math>E_0=1</math>,<math>E_2 = â1</math>,<math>E_4 = 5</math>,<math>E_6 = â61</math>,<math>E_8 = 1,385</math>,<math>E_{10} = â50,521</math>,<math>E_{12} = 2,702,765</math>,<math>E_{14} = â199,360,981</math>,<math>E_{16} = 19,391,512,145</math>,<math>E_{18} = â2,404,879,675,441</math><br> | * 아래에서 <math>E_n</math>은 [[오일러수]]를 뜻함.<br><math>E_0=1</math>,<math>E_2 = â1</math>,<math>E_4 = 5</math>,<math>E_6 = â61</math>,<math>E_8 = 1,385</math>,<math>E_{10} = â50,521</math>,<math>E_{12} = 2,702,765</math>,<math>E_{14} = â199,360,981</math>,<math>E_{16} = 19,391,512,145</math>,<math>E_{18} = â2,404,879,675,441</math><br> | ||
16번째 줄: | 15번째 줄: | ||
− | <h5 style=" | + | <h5 style="margin: 0px; line-height: 2em;">증명</h5> |
[[정수에서의 리만제타함수의 값]] 에서 사용한 방식을 모방한다. | [[정수에서의 리만제타함수의 값]] 에서 사용한 방식을 모방한다. | ||
− | <math>\beta(5)</math>의 | + | <math>\beta(5)</math>의 경우를 예로 구해보자. |
<math>\oint_{C_{R}}\frac{\pi/2\sec(\pi z/2)}{z^{5}}dz</math> | <math>\oint_{C_{R}}\frac{\pi/2\sec(\pi z/2)}{z^{5}}dz</math> | ||
58번째 줄: | 57번째 줄: | ||
− | <h5 style=" | + | <h5 style="margin: 0px; line-height: 2em;">special values for derivative</h5> |
<math>\beta'(1)</math> 의 값 | <math>\beta'(1)</math> 의 값 | ||
78번째 줄: | 77번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5> |
84번째 줄: | 83번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5> |
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
92번째 줄: | 91번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들</h5> |
* [[카탈란 상수]]<br> | * [[카탈란 상수]]<br> | ||
99번째 줄: | 98번째 줄: | ||
* [[정수에서의 리만제타함수의 값]]<br> | * [[정수에서의 리만제타함수의 값]]<br> | ||
− | + | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> |
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid= | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5> |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
121번째 줄: | 120번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5> |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
129번째 줄: | 128번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5> |
* 도서내검색<br> | * 도서내검색<br> | ||
143번째 줄: | 142번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5> |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
154번째 줄: | 153번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5> |
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | ||
* [http://navercast.naver.com/science/list 네이버 오늘의과학] | * [http://navercast.naver.com/science/list 네이버 오늘의과학] |
2009년 11월 7일 (토) 18:11 판
간단한 소개
- 디리클레 L-함수의 특별한 경우
\(\beta(s) = \sum_{n=0}^\infty \frac{(-1)^n} {(2n+1)^s} = \frac{1}{\Gamma(s)}\int_0^{\infty}\frac{t^{s-1}e^{-t}}{1 + e^{-2t}}\,dt=\frac{1}{2\Gamma(s)}\int_{0}^{\infty}\frac{1}{\cosh t}t^s \frac{\,dt}{t}\) - 함수방정식
\(\Lambda(s)=(\frac{\pi}{4})^{-{(s+1)}/{2}}\Gamma(\frac{s+1}{2})\beta(s)\) 라 두면
\(\Lambda(s)=\Lambda(1-s)\) 를 만족 - #
Special values
- 아래에서 \(E_n\)은 오일러수를 뜻함.
\(E_0=1\),\(E_2 = â1\),\(E_4 = 5\),\(E_6 = â61\),\(E_8 = 1,385\),\(E_{10} = â50,521\),\(E_{12} = 2,702,765\),\(E_{14} = â199,360,981\),\(E_{16} = 19,391,512,145\),\(E_{18} = â2,404,879,675,441\) - \(k\geq 0 \) 인 정수일 때,
\(\beta(2k+1)={{{({-1})^k}{E_{2k}}{\pi^{2k+1}} \over {4^{k+1}}(2k!)}}\) - \(k\geq 0 \)인 정수일 때,
\(\beta(-k)={{E_{k}} \over {2}}\)
\(\beta(0)= \frac{1}{2}, \beta(1)\;=\;\tan^{-1}(1)\;=\;\frac{\pi}{4}, \beta(3)\;=\;\frac{\pi^3}{32}, \beta(5)\;=\;\frac{5\pi^5}{1536}, \beta(7)\;=\;\frac{61\pi^7}{184320}\)
증명
정수에서의 리만제타함수의 값 에서 사용한 방식을 모방한다.
\(\beta(5)\)의 경우를 예로 구해보자.
\(\oint_{C_{R}}\frac{\pi/2\sec(\pi z/2)}{z^{5}}dz\)
\(C_{R}\)는 원점을 중심으로 반지름이 \(R\) 인 원
이때 \(R\)이 커지면, 적분은 0으로 수렴한다.
유수정리를 사용하자.
정수 \(2k+1\)에 대하여 \(z\approx 2k+1\) 이면, \(\pi/2 \sec \pi z/2 \approx \frac{(-1)^{k+1}}{z-(2k+1)}\)
\(\frac{\pi/2\sec(\pi z/2)}{z^{5}}\)의 정수 \(2k+1\)에서의 유수(residue)는 \((-1)^{k+1}\frac{1}{(2k+1)^{5}}\)로 주어진다.
\(\sec x = 1 + \frac {x^2} {2} + \frac {5 x^4} {24} + \frac {61 x^6} {720} + \cdots=\sum_{n=0}^\infty \frac{(-1)^n E_{2n} x^{2n}}{(2n)!}\) 삼각함수와 쌍곡함수의 맥클로린 급수 참조
를 이용하면 0 에서의 유수는 \(\frac{\pi}{2}\times \frac{5}{24}\times \frac{\pi^4}{16}\)임을 알 수 있다.
그러므로 모든 유수의 합은 \(0=\frac{5\pi^5}{768}+\sum_{-\infty}^{\infty}\frac{(-1)^{k+1}}{(2k+1)^{5}}=\frac{5\pi^5}{768}+\sum_{k=0}^{\infty}\frac{(-1)^{k+1}}{(2k+1)^{5}}+\sum_{n=1}^{\infty}\frac{(-1)^{-n}}{(2n-1)^{5}}=\frac{5\pi^5}{768}+2\sum_{k=1}^{\infty}\frac{(-1)^{k}}{(2k+1)^{5}}\)
따라서 \(\beta(5)=\frac{5\pi^5}{1536}\)
일반적인 자연수 \(k\) 에 대하여도 마찬가지 방법으로
\(\beta(2k+1)={{{({-1})^k}{E_{2k}}{\pi^{2k+1}} \over {4^{k+1}}(2k!)}}\)
을 얻는다.
또한 함수방정식으로부터 \(\beta(0)=\frac{1}{2}\) 와 나머지 짝수인 음의 정수에서의 값을 구할 수 있음
special values for derivative
\(\beta'(1)\) 의 값
\(\beta(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}\) 와 Hurwitz 제타함수 의 에르미트 표현 \(\frac{\partial }{\partial s}\zeta(s,a)|_{s=0} =\log \frac{\Gamma(a)}{\sqrt{2\pi}}\) 을 사용하면,
\(\beta'(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}(-\log 4)+4^{-s}\{\zeta'(s,1/4)-\zeta'(s,3/4)\}\)
\(\beta'(0)=\{\zeta(0,1/4)-\zeta(0,3/4)\}(-\log 4)+\{\zeta'(0,1/4)-\zeta'(0,3/4)\}=-\beta(0)\log4+\log\frac{\Gamma(1/4)}{\Gamma(3/4)}\)
위의 함수방정식을 사용하자.
Digamma 함수 의 값 \(\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma\)에서 \(\Gamma'(1/2)=-\sqrt{\pi}(2\ln2+\gamma)\) 를 활용하여,
\(\beta'(1)=\frac{\pi}{4}\gamma+\frac{\pi}{2}\ln(\frac{\Gamma(3/4)}{\Gamma(1/4)}\sqrt{2\pi})\)
를 얻는다.
재미있는 사실
역사
관련된 다른 주제들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Dirichlet_beta_function
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=secant
- NIST Digital Library of Mathematical Functions
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)