"라플라스 변환"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | <h5 | + | <h5>이 항목의 스프링노트 원문주소</h5> |
* [[라플라스 변환]] | * [[라플라스 변환]] | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 | + | <h5>개요</h5> |
− | + | * | |
17번째 줄: | 17번째 줄: | ||
<h5>정의</h5> | <h5>정의</h5> | ||
− | <math>F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt</math> | + | * 함수 <math>f</math> 에 대한 라플라스 변환을 다음과 같이 정의함<br><math>F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt</math><br> |
23번째 줄: | 23번째 줄: | ||
− | <h5 | + | <h5>성질</h5> |
− | <math>\mathcal{L}\left\{\frac{df}{dt}\right\} = s\cdot\mathcal{L} \left\{ f(t) \right\}-f(0)</math> | + | * 함수 <math>f</math>에 대한 도함수의 라플라스 변환은 다음과 같다<br><math>\mathcal{L}\left\{\frac{df}{dt}\right\} = s\cdot\mathcal{L} \left\{ f(t) \right\}-f(0)</math><br> |
43번째 줄: | 43번째 줄: | ||
− | <h5 | + | <h5>상수계수 미분방정식에의 응용</h5> |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>멜린변환과의 관계</h5> | ||
* [[푸리에 변환]] 항목 참조<br><math>\hat{f}(s)= \int_{0}^{\infty} f(x) x^{s}\frac{dx}{x}</math><br> | * [[푸리에 변환]] 항목 참조<br><math>\hat{f}(s)= \int_{0}^{\infty} f(x) x^{s}\frac{dx}{x}</math><br> | ||
115번째 줄: | 125번째 줄: | ||
− | <h5>관련도서 | + | |
+ | |||
+ | <h5>관련도서</h5> | ||
* 도서내검색<br> | * 도서내검색<br> | ||
124번째 줄: | 136번째 줄: | ||
** http://book.daum.net/search/mainSearch.do?query= | ** http://book.daum.net/search/mainSearch.do?query= | ||
** http://book.daum.net/search/mainSearch.do?query= | ** http://book.daum.net/search/mainSearch.do?query= | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2012년 7월 28일 (토) 03:28 판
이 항목의 스프링노트 원문주소
개요
정의
- 함수 \(f\) 에 대한 라플라스 변환을 다음과 같이 정의함
\(F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt\)
성질
- 함수 \(f\)에 대한 도함수의 라플라스 변환은 다음과 같다
\(\mathcal{L}\left\{\frac{df}{dt}\right\} = s\cdot\mathcal{L} \left\{ f(t) \right\}-f(0)\)
(정리)
\(f\)가 유계이고, \(t\geq 0\)에서 조각적 연속(piecewise continuous)라 하자.
\(\mathfrak{R}(s)\geq 0\)에서 정의된 함수 \(F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt\) 가 \(\mathfrak{R}(s)\geq 0\)에서 해석함수로 확장되면,
\(\int_0^{\infty} f(t) \,dt\)이 존재하고, \(F(0) = \int_0^{\infty} f(t) \,dt\)가 성립한다.
상수계수 미분방정식에의 응용
멜린변환과의 관계
- 푸리에 변환 항목 참조
\(\hat{f}(s)= \int_{0}^{\infty} f(x) x^{s}\frac{dx}{x}\) - 멜린변환에서 \(x=e^{-t}\)로 변수를 치환하면, 라플라스 변환을 얻는다
\(\int_{0}^{\infty} f(e^{-t}) e^{-st}\,dt\)
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/라플라스_변환
- http://en.wikipedia.org/wiki/Laplace_transform
- http://en.wikipedia.org/wiki/Laplace–Stieltjes_transform
- http://en.wikipedia.org/wiki/Moment_(mathematics)
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문