"론스키안 (Wronskian)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query=” 문자열을 “” 문자열로) |
||
117번째 줄: | 117번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2012년 11월 2일 (금) 07:28 판
이 항목의 수학노트 원문주소
개요
- 여러 함수에 대해 정의되는 어떤 행렬식
- 미분방정식의 해가 선형독립임을 보일 때 사용되기도 함
예
- 두 함수 f,g 에 대하여 론스키안은
\(\left( \begin{array}{cc} f(x) & g(x) \\ f'(x) & g'(x) \end{array} \right)\) 의 행렬식 \(f(x) g'(x)-g(x) f'(x)\) 가 된다 - 함수 \(e^{\alpha t}\)와 \(e^{\beta t}\)의 론스키안은 \(e^{t (\alpha +\beta )} (-\alpha +\beta )\) 이다
- 이계 미분방정식
\(\frac{d^2y}{dx^2}+p(x)\frac{dy}{dx}+q(x)y=0\)
의 두 해, \(y_1,y_2\)의 론스키안 \(W\) 는 미분방정식 \(W'=-pW\)의 해가 된다
- 세 함수 f,g,h에 대하여 론스키안은 다음 행렬의 행렬식으로 정의된다
\(\left( \begin{array}{ccc} f(x) & g(x) & h(x) \\ f'(x) & g'(x) & h'(x) \\ f''(x) & g''(x) & h''(x) \end{array} \right)\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxRkdjbUNLdktEU0E/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Wronskian
- Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문