"리만 가설"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
− | + | * [[리만가설]] | |
18번째 줄: | 18번째 줄: | ||
[[리만가설]] | [[리만가설]] | ||
+ | |||
+ | |||
90번째 줄: | 92번째 줄: | ||
− | <h5 | + | |
+ | |||
+ | <h5>Spectal theory and RH</h5> | ||
+ | |||
+ | * [http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.dmj/1077311789&page=record The Selberg trace formula and the Riemann zeta function] | ||
+ | * Dennis A. Hejhal | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>Hilbert-Polya</h5> | ||
+ | |||
+ | * http://en.wikipedia.org/wiki/Hilbert-P%C3%B3lya_conjecture | ||
+ | * http://en.wikipedia.org/wiki/Gaussian_Unitary_Ensemble | ||
+ | * [http://arxiv.org/abs/math-ph/0412017 Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond] Authors: Yan V. Fyodorov | ||
+ | * Montgomery, Hugh L. (1973), "The pair correlation of zeros of the zeta function", Analytic number theory, Proc. Sympos. Pure Math., XXIV, Providence, R.I.: American Mathematical Society, pp. 181–193, | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>Noncommutatative geometry</h5> | ||
− | + | * Noncommutative Geometry, Quantum Fields, and Motives Alain Connes, Matilde Marcolli | |
+ | * [http://gigapedia.com/items:description?id=90484 Noncommutative Geometry and Number Theory]: Where Arithmetic Meets Geometry and Physics (Aspects of Mathematics) Caterina Consani, Matilde Marcolli (Eds.) | ||
− | + | ||
− | <h5 | + | <h5>Random matrices</h5> |
+ | |||
+ | * http://hal.archives-ouvertes.fr/hal-00119410/en/ | ||
+ | * http://www.secamlocal.ex.ac.uk/people/staff/mrwatkin/zeta/random.htm | ||
+ | * Random Matrices and the Riemann zeta function | ||
+ | * [http://people.reed.edu/%7Ejerry/311/zeta.pdf http://people.reed.edu/~jerry/311/zeta.pdf] analytic continuation'' | ||
− | + | ||
+ | |||
+ | <h5>Computation of non-trivial zeros</h5> | ||
+ | |||
+ | R. P. Brent, “On the zeros of the Riemann zeta function in the critical strip”, Mathematics of Computation<br> 33 (1979), 1361–1372. | ||
+ | |||
+ | * http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf | ||
+ | |||
+ | The Riemann-Siegel Expansion for the Zeta Function: High Orders and Remainders, M. V. Berry | ||
− | + | [http://www.dtc.umn.edu/%7Eodlyzko/doc/arch/fast.zeta.eval.pdf http://www.dtc.umn.edu/~odlyzko/doc/arch/fast.zeta.eval.pdf] | |
− | + | [http://www.mathematik.hu-berlin.de/%7Egaggle/EVENTS/2006/BRENT60/presentations/Herman%20J.J.%20te%20Riele%20-%20Separation%20of%20the%20complex%20zeros%20of%20the%20Riemann%20zeta%20function.pdf http://www.mathematik.hu-berlin.de/~gaggle/EVENTS/2006/BRENT60/presentations/Herman%20J.J.%20te%20Riele%20-%20Separation%20of%20the%20complex%20zeros%20of%20the%20Riemann%20zeta%20function.pdf] | |
+ | |||
+ | [http://wwwmaths.anu.edu.au/%7Ebrent/pd/rpb047.pdf http://wwwmaths.anu.edu.au/~brent/pd/rpb047.pdf] | ||
+ | |||
+ | |||
− | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;"> | + | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">재미있는 사실</h5> |
+ | |||
+ | * 영화속 오류 russell crowe riemann zeta<br> | ||
+ | * http://mathoverflow.net/questions/13647/why-does-the-riemann-zeta-function-have-non-trivial-zeros<br> | ||
− | + | ||
− | |||
− | |||
− | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;"> | + | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">역사</h5> |
− | * [ | + | * [[수학사연표 (역사)|수학사연표]] |
− | |||
− | |||
− | |||
131번째 줄: | 171번째 줄: | ||
− | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;"> | + | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">관련된 항목들</h5> |
− | * [ | + | * [[감마함수]]<br> |
− | |||
− | |||
141번째 줄: | 179번째 줄: | ||
− | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;"> | + | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">수학용어번역</h5> |
− | * | + | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> |
− | + | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | |
− | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | |
− | |||
− | ** http:// | ||
− | * | ||
− | |||
155번째 줄: | 189번째 줄: | ||
− | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;"> | + | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">사전 형태의 자료</h5> |
− | * | + | * [http://ko.wikipedia.org/wiki/%EB%A6%AC%EB%A7%8C%EA%B0%80%EC%84%A4 http://ko.wikipedia.org/wiki/리만가설] |
− | ** http:// | + | * http://en.wikipedia.org/wiki/Riemann_hypothesis |
− | + | * http://en.wikipedia.org/wiki/Riemann-Siegel_formula | |
− | * | + | * [http://en.wikipedia.org/wiki/Riemann%E2%80%93Siegel_theta_function http://en.wikipedia.org/wiki/Riemann–Siegel_theta_function] |
+ | * http://www.wolframalpha.com/input/?i=Riemann+zeta | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
166번째 줄: | 202번째 줄: | ||
− | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;"> | + | <h5 style="line-height: 3.42em; margin: 0px; font-family: 'malgun gothic',dotum,gulim,sans-serif; background-position: 0px 100%; color: rgb(34, 61, 103); font-size: 1.16em;">관련논문</h5> |
− | * | + | * [http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/ Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse] Bernhard Riemann, November 1859 |
− |
2012년 4월 18일 (수) 16:47 판
이 항목의 스프링노트 원문주소
개요
- 리만제타함수의 함수방정식은 다음과 같음
\(\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\) - 자명한 해는 \(s=-2,-4,-6\cdots\)
- 리만제타함수의 자명하지 않은 해는 그 실수부가 \(1/2\) 이라는 추측
소수정리
- "모든 실수 t에 대하여 \(\zeta(1+it)\neq 0 \) 이다" 는 소수정리와 동치명제이다
- 소수정리
Conjecture
The positive imaginary parts of nontrivial zeros of \zeta(s) are linearly independent over \mathbb{Q}
일반화된 리만가설
응용
Rubinstein-Sarnak 1994
how often \pi(x)>Li(x)
even(x) : number of natural numbers , even number of prime factors
Odd(x) : odd number of prime factors
골드바흐 추측
1923 하디-리틀우드
1937비노그라도프
1997 Deshouillers-Effinger-te Riele-Zinoviev
\(C_{\mathrm{Artin}}=\prod_{q\ \mathrm{prime}} \left(1-\frac{1}{q(q-1)}\right) = 0.3739558136\ldots.\)
1967 Hooley
1973 Weinberger
Spectal theory and RH
- The Selberg trace formula and the Riemann zeta function
- Dennis A. Hejhal
Hilbert-Polya
- http://en.wikipedia.org/wiki/Hilbert-P%C3%B3lya_conjecture
- http://en.wikipedia.org/wiki/Gaussian_Unitary_Ensemble
- Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond Authors: Yan V. Fyodorov
- Montgomery, Hugh L. (1973), "The pair correlation of zeros of the zeta function", Analytic number theory, Proc. Sympos. Pure Math., XXIV, Providence, R.I.: American Mathematical Society, pp. 181–193,
Noncommutatative geometry
- Noncommutative Geometry, Quantum Fields, and Motives Alain Connes, Matilde Marcolli
- Noncommutative Geometry and Number Theory: Where Arithmetic Meets Geometry and Physics (Aspects of Mathematics) Caterina Consani, Matilde Marcolli (Eds.)
Random matrices
- http://hal.archives-ouvertes.fr/hal-00119410/en/
- http://www.secamlocal.ex.ac.uk/people/staff/mrwatkin/zeta/random.htm
- Random Matrices and the Riemann zeta function
- http://people.reed.edu/~jerry/311/zeta.pdf analytic continuation
Computation of non-trivial zeros
R. P. Brent, “On the zeros of the Riemann zeta function in the critical strip”, Mathematics of Computation
33 (1979), 1361–1372.
The Riemann-Siegel Expansion for the Zeta Function: High Orders and Remainders, M. V. Berry
http://www.dtc.umn.edu/~odlyzko/doc/arch/fast.zeta.eval.pdf
http://wwwmaths.anu.edu.au/~brent/pd/rpb047.pdf
재미있는 사실
- 영화속 오류 russell crowe riemann zeta
- http://mathoverflow.net/questions/13647/why-does-the-riemann-zeta-function-have-non-trivial-zeros
역사
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/리만가설
- http://en.wikipedia.org/wiki/Riemann_hypothesis
- http://en.wikipedia.org/wiki/Riemann-Siegel_formula
- http://en.wikipedia.org/wiki/Riemann–Siegel_theta_function
- http://www.wolframalpha.com/input/?i=Riemann+zeta
- NIST Digital Library of Mathematical Functions
관련논문
- Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse Bernhard Riemann, November 1859