"매개화된 곡면"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | * | + | * 곡면의 매개화<br><math>\mathbf{r}(u,v)=\left(x(u,v),y(u,v),z(u,v)\right)</math>, <math>(u,v)\in D</math><br> |
− | + | * 단위법선벡터(unit normal vector) - 곡면의 향을 결정<br><math>\mathbf{n}=\frac{\mathbf{r}_ {v}\times \mathbf{r}_{v}}{|\mathbf{r}_ {v}\times \mathbf{r}_{v}|}</math> 또는 <math>\mathbf{n}=-\frac{\mathbf{r}_ {v}\times \mathbf{r}_{v}}{|\mathbf{r}_ {v}\times \mathbf{r}_{v}|}</math><br> 이 때, <math>\mathbf{r}_{u}(u,v)=\left(x_u,y_u,z_u \right)</math>, <math>\mathbf{r}_{v}(u,v)=\left(x_v,y_v,z_v \right)</math><br> | |
− | |||
− | |||
− | |||
− | * | + | ==매개화된 곡면의 예== |
− | * | + | * 2변수 함수의 그래프로 주어지는 곡면 :<math>\mathbf{r}(x,y)=\left(x,y,f(x,y)\right), (x,y)\in D</math> |
+ | * [[구면(sphere)]] :<math>X(u,v)=R(\cos u \sin v, \sin u \sin v, \cos v), 0<u<2\pi, 0<v<\pi</math> | ||
+ | * [[원통(cylinder)]] :<math>\mathbf{r}(\theta,z)=\left(r\cos \theta,r\sin \theta,z\right), 0\le \theta \le 2\pi, -\infty\le z \le \infty </math> | ||
+ | * [[회전으로 얻어지는 곡면]] | ||
+ | ** 평면 상에서 <math>(f(v), g(v))</math>로 매개화된 곡선을 y축을 중심으로 회전하여 얻어지는 곡면 :<math>\mathbf{r}(u,v)=(f(v) \cos (u),f(v) \sin (u),g(v))</math> | ||
− | |||
− | + | ||
− | + | ==법선벡터의 예== | |
− | + | ||
− | + | ||
− | + | ||
− | + | ==역사== | |
− | + | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
− | + | ||
− | + | ||
− | + | ==메모== | |
− | + | ||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==관련된 항목들== | |
− | + | ||
− | + | ||
+ | ==매스매티카 파일 및 계산 리소스== | ||
− | * | + | * |
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* http://functions.wolfram.com/ | * http://functions.wolfram.com/ | ||
78번째 줄: | 61번째 줄: | ||
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | * [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | ||
− | + | ||
− | + | ||
− | + | ==사전 형태의 자료== | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
90번째 줄: | 73번째 줄: | ||
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
− | + | ||
− | + | ||
− | + | ==리뷰논문, 에세이, 강의노트== | |
− | + | ||
− | + | ||
− | + | ||
− | + | ==관련논문== | |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
108번째 줄: | 91번째 줄: | ||
* http://dx.doi.org/ | * http://dx.doi.org/ | ||
− | + | ||
− | + | ||
− | + | ==관련도서== | |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 9월 8일 (토) 12:01 판
개요
- 곡면의 매개화
\(\mathbf{r}(u,v)=\left(x(u,v),y(u,v),z(u,v)\right)\), \((u,v)\in D\) - 단위법선벡터(unit normal vector) - 곡면의 향을 결정
\(\mathbf{n}=\frac{\mathbf{r}_ {v}\times \mathbf{r}_{v}}{|\mathbf{r}_ {v}\times \mathbf{r}_{v}|}\) 또는 \(\mathbf{n}=-\frac{\mathbf{r}_ {v}\times \mathbf{r}_{v}}{|\mathbf{r}_ {v}\times \mathbf{r}_{v}|}\)
이 때, \(\mathbf{r}_{u}(u,v)=\left(x_u,y_u,z_u \right)\), \(\mathbf{r}_{v}(u,v)=\left(x_v,y_v,z_v \right)\)
매개화된 곡면의 예
- 2변수 함수의 그래프로 주어지는 곡면 \[\mathbf{r}(x,y)=\left(x,y,f(x,y)\right), (x,y)\in D\]
- 구면(sphere) \[X(u,v)=R(\cos u \sin v, \sin u \sin v, \cos v), 0<u<2\pi, 0<v<\pi\]
- 원통(cylinder) \[\mathbf{r}(\theta,z)=\left(r\cos \theta,r\sin \theta,z\right), 0\le \theta \le 2\pi, -\infty\le z \le \infty \]
- 회전으로 얻어지는 곡면
- 평면 상에서 \((f(v), g(v))\)로 매개화된 곡선을 y축을 중심으로 회전하여 얻어지는 곡면 \[\mathbf{r}(u,v)=(f(v) \cos (u),f(v) \sin (u),g(v))\]
법선벡터의 예
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문