"미분형식 (differential forms)과 다변수 미적분학"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
43번째 줄: 43번째 줄:
  
 
 
 
 
 +
 +
 
 +
 +
<h5>표준적인 교과서</h5>
 +
 +
* <br><br>
 +
 +
 
 +
 +
<h5>참고할만한 자료</h5>
 +
 +
* [http://ko.wikipedia.org/wiki/%EB%AF%B8%EB%B6%84%ED%98%95%EC%8B%9D http://ko.wikipedia.org/wiki/미분형식]
 +
* http://en.wikipedia.org/wiki/Differential_forms
 +
* [http://www.jstor.org/stable/2688847 Covariant and Contravariant Vectors]<br>
 +
**  S. R. Deans<br>
 +
** <cite>Mathematics Magazine</cite>, Vol. 44, No. 1 (Jan., 1971), pp. 5-8
 +
* [http://www.jstor.org/stable/2687253 Differential Forms for Constrained Max-Min Problems: Eliminating Lagrange Multipliers]<br>
 +
** Frank Zizza
 +
** <cite>The College Mathematics Journal</cite>, Vol. 29, No. 5 (Nov., 1998), pp. 387-396
 +
* [http://www.jstor.org/stable/2307716 What are Tensors?]<br>
 +
** Peter Scherk and Michael Kwizak
 +
** <cite>The American Mathematical Monthly</cite>, Vol. 58, No. 5 (May, 1951), pp. 297-305
 +
* [http://www.jstor.org/stable/2695706 Differential Forms, the Early Days; or the Stories of Deahna's Theorem and of Volterra's Theorem]<br>
 +
 +
* Hans Samelson
 +
* <cite>The American Mathematical Monthly</cite>, Vol. 108, No. 6 (Jun. - Jul., 2001), pp. 522-530
  
 
 
 
 
  
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 +
 +
* [http://www.amazon.com/Calculus-Cohomology-Rham-Characteristic-Classes/dp/0521589568 From Calculus to Cohomology: De Rham Cohomology and Characteristic Classe]<br>[http://www.amazon.com/Calculus-Cohomology-Rham-Characteristic-Classes/dp/0521589568 ]<br>
 +
**  Ib H. Madsen (Author), Jxrgen Tornehave<br>
 +
** 뒷부분은 학부생이 보기에 다소 어렵지만, 앞부분만으로도 가치가 있음.
  
 
*  도서내검색<br>
 
*  도서내검색<br>
62번째 줄: 92번째 줄:
  
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
+
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=form
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid={D6048897-56F9-43D7-8BB6-50B362D1243A}&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid={D6048897-56F9-43D7-8BB6-50B362D1243A}&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
  
71번째 줄: 101번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
* http://www.wolframalpha.com/input/?i=
+
* http://www.wolframalpha.com/input/?i=<br>  <br>
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
 
 
 
 
 
 
<h5>표준적인 교과서</h5>
 
 
 
* [http://www.amazon.com/Differential-Forms-Applications-Universitext-Manfredo/dp/3540576185 Differential Forms and Applications]<br>
 
**  Manfredo P. Do Carmo<br>
 
 
 
 
 
 
 
<h5>추천도서 및 보조교재</h5>
 
 
 
*
 
<h1 class="parseasinTitle"></h1>
 
[http://www.amazon.com/Calculus-Cohomology-Rham-Characteristic-Classes/dp/0521589568 From Calculus to Cohomology: De Rham Cohomology and Characteristic Classe]<br>
 
** Ib H. Madsen (Author), Jxrgen Tornehave
 
** 뒷부분은 학부생이 보기에 다소 어렵지만, 앞부분만으로도 가치가 있음.
 
 
 
 
 
 
 
<h5>참고할만한 자료</h5>
 
 
 
* [http://www.jstor.org/stable/2688847 Covariant and Contravariant Vectors]<br>
 
**  S. R. Deans<br>
 
** <cite>Mathematics Magazine</cite>, Vol. 44, No. 1 (Jan., 1971), pp. 5-8
 
* [http://www.jstor.org/stable/2687253 Differential Forms for Constrained Max-Min Problems: Eliminating Lagrange Multipliers]<br>
 
** Frank Zizza
 
** <cite>The College Mathematics Journal</cite>, Vol. 29, No. 5 (Nov., 1998), pp. 387-396
 
* [http://www.jstor.org/stable/2307716 What are Tensors?]<br>
 
** Peter Scherk and Michael Kwizak
 
** <cite>The American Mathematical Monthly</cite>, Vol. 58, No. 5 (May, 1951), pp. 297-305
 
* [http://www.jstor.org/stable/2695706 Differential Forms, the Early Days; or the Stories of Deahna's Theorem and of Volterra's Theorem]<br>
 
 
 
* Hans Samelson
 
* <cite>The American Mathematical Monthly</cite>, Vol. 108, No. 6 (Jun. - Jul., 2001), pp. 522-530
 

2009년 7월 12일 (일) 15:42 판

간단한 요약

 

 

선수 과목 또는 알고 있으면 좋은 것들

 

 

다루는 대상

 

 

중요한 개념 및 정리

 

 

유명한 정리 혹은 생각할만한 문제

 

 

다른 과목과의 관련성

 

관련된 대학원 과목 또는 더 공부하면 좋은 것들

 

 

표준적인 교과서


 

참고할만한 자료
  • Hans Samelson
  • The American Mathematical Monthly, Vol. 108, No. 6 (Jun. - Jul., 2001), pp. 522-530

 

관련도서 및 추천도서

 

 

수학용어번역

 

참고할만한 자료