"미분형식과 맥스웰 방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/1942998">다변수미적분학</a>페이지로 이동하였습니다.)
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 +
 +
* [[미분형식과 맥스웰 방정식|맥스웰 방정식과 미분형식]]
  
 
 
 
 
8번째 줄: 10번째 줄:
  
 
*  electromagnetic field strength<br><math>F_{\alpha \beta} = \left( \begin{matrix} 0 &  \frac{E_x}{c} &  \frac{E_y}{c} &  \frac{E_z}{c} \\ \frac{-E_x}{c} & 0 & -B_z & B_y \\ \frac{-E_y}{c}  & B_z & 0 & -B_x \\ \frac{-E_z}{c} & -B_y & B_x & 0 \end{matrix} \right)</math><br>
 
*  electromagnetic field strength<br><math>F_{\alpha \beta} = \left( \begin{matrix} 0 &  \frac{E_x}{c} &  \frac{E_y}{c} &  \frac{E_z}{c} \\ \frac{-E_x}{c} & 0 & -B_z & B_y \\ \frac{-E_y}{c}  & B_z & 0 & -B_x \\ \frac{-E_z}{c} & -B_y & B_x & 0 \end{matrix} \right)</math><br>
*  다음과 같은 미분형식으로 이해할 수 있음<br><math>\beta=E_1 d x_1\wedge d t+B_3 d x_1\wedge d x_2+E_2 d x_2\wedge d t+B_1 d x_2\wedge d x_3+E_3 d x_3\wedge d t+B_2 d x_3\wedge d x_1</math><br>
+
*  다음과 같은 미분형식으로 이해할 수 있음<br><math>F=E_1 d x_1\wedge d t+B_3 d x_1\wedge d x_2+E_2 d x_2\wedge d t+B_1 d x_2\wedge d x_3+E_3 d x_3\wedge d t+B_2 d x_3\wedge d x_1</math><br>
*  이차미분형식으로서 로렌츠 불변이다<br><math>\beta=E_1 d x_1\wedge d t+B_3 d x_1\wedge d x_2+E_2 d x_2\wedge d t+B_1 d x_2\wedge d x_3+E_3 d x_3\wedge d t+B_2 d x_3\wedge d x_1</math><br>
+
*  이차미분형식으로서 로렌츠 불변이다<br><math>F'=E'_1 d x'_1\wedge d t'+B'_3 d x'_1\wedge d x'_2+E'_2 d x'_2\wedge d t'+B'_1 d x'_2\wedge d x'_3+E'_3 d x'_3\wedge d t'+B'_2 d x'_3\wedge d x'_1=F</math><br>
 +
 
 +
 
  
 
 
 
 

2012년 1월 15일 (일) 20:17 판

이 항목의 수학노트 원문주소

 

 

개요
  • electromagnetic field strength
    \(F_{\alpha \beta} = \left( \begin{matrix} 0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\ \frac{-E_x}{c} & 0 & -B_z & B_y \\ \frac{-E_y}{c} & B_z & 0 & -B_x \\ \frac{-E_z}{c} & -B_y & B_x & 0 \end{matrix} \right)\)
  • 다음과 같은 미분형식으로 이해할 수 있음
    \(F=E_1 d x_1\wedge d t+B_3 d x_1\wedge d x_2+E_2 d x_2\wedge d t+B_1 d x_2\wedge d x_3+E_3 d x_3\wedge d t+B_2 d x_3\wedge d x_1\)
  • 이차미분형식으로서 로렌츠 불변이다
    \(F'=E'_1 d x'_1\wedge d t'+B'_3 d x'_1\wedge d x'_2+E'_2 d x'_2\wedge d t'+B'_1 d x'_2\wedge d x'_3+E'_3 d x'_3\wedge d t'+B'_2 d x'_3\wedge d x'_1=F\)

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서