"벡터의 외적(cross product)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 벡터의 외적로 바꾸었습니다.)
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 +
 +
* [[벡터의 외적(cross product)|벡터의 외적]]
  
 
 
 
 
7번째 줄: 9번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
* <math>\mathbf{a}, \mathbf{b}</math><br>
+
* 삼차원 유클리드 공간의 두 벡터 <math>\mathbf{a}, \mathbf{b}</math>에 정의된 이항연산<br>
 +
*  두 벡터에 수직이며, 크기가 <math>|\mathbf{a}| |\mathbf{b}|\sin\theta</math>인 벡터를 얻는다<br>
 +
*  벡터의 크기는 두 벡터가 만드는 평행사변형의 넓이와 같게 됨<br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5 style="margin: 0px; line-height: 2em;">정의</h5>
  
<math>\mathbf{a}\times\mathbf{b}=\det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{bmatrix}</math>
+
*  단위벡터 <math>\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)</math> 를 정의<br>
 +
*  두 벡터 <math>\mathbf a = (a_1, a_2, a_3)</math>과 <math>\mathbf b = (b_1, b_2, b_3)</math><br><math>\mathbf{a}\times\mathbf{b}=\det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{bmatrix}</math><br>
  
 
 
 
 
40번째 줄: 51번째 줄:
  
 
* [[벡터의 내적]]<br>
 
* [[벡터의 내적]]<br>
 +
* [[해밀턴의 사원수(quarternions)|해밀턴의 사원수]]<br>
 
* [[1,2,4,8 과 1,3,7]]<br>
 
* [[1,2,4,8 과 1,3,7]]<br>
  

2010년 9월 11일 (토) 07:55 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 삼차원 유클리드 공간의 두 벡터 \(\mathbf{a}, \mathbf{b}\)에 정의된 이항연산
  • 두 벡터에 수직이며, 크기가 \(|\mathbf{a}| |\mathbf{b}|\sin\theta\)인 벡터를 얻는다
  • 벡터의 크기는 두 벡터가 만드는 평행사변형의 넓이와 같게 됨

 

 

정의
  • 단위벡터 \(\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)\) 를 정의
  • 두 벡터 \(\mathbf a = (a_1, a_2, a_3)\)과 \(\mathbf b = (b_1, b_2, b_3)\)
    \(\mathbf{a}\times\mathbf{b}=\det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{bmatrix}\)

 

 

내적과의 관계

\(|\mathbf{a}\times\mathbf{b}|+|\mathbf{a}\cdot \mathbf{b}|=|\mathbf{a}}|\mathbf{b}|\)

 

 

재미있는 사실

 

 

역사

 

 

관련된 항목들

 

 

수학용어번역

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그