"사이클로이드"의 두 판 사이의 차이
43번째 줄: | 43번째 줄: | ||
[/pages/4402517/attachments/2339127 figure3.gif] | [/pages/4402517/attachments/2339127 figure3.gif] | ||
+ | |||
+ | * http://books.google.com/books?id=dptKVr-5LJAC&pg=PA223&sig=PVA7Q1U_MyXinobyhOf54BwjShQ&hl=en#v=onepage&q&f=false | ||
+ | |||
+ | 곡선의 시작점을 <math>x(0)=y(0)=0 ì´ëê¹</math>, | ||
+ | |||
+ | 곡선을 따라 내려올때 걸리는 시간은 다음과 같이 구할 수 있다. | ||
+ | |||
+ | <math>t=\int \frac{1}{v} \, ds</math>(v는 속력, ds 는 길이요소, t는 시간) | ||
+ | |||
+ | 에너지 보존 법칙 <math>mgy=\frac{1}{2}mv^2</math> 에서<math>v=\sqrt{2gy}</math>. | ||
+ | |||
+ | 이제 곡선의 x좌표를 y의 함수로 생각하자. 곡선을 따라 내려올 때 걸리는 시간은 | ||
+ | |||
+ | <math>T=\int \frac{1}{v} \, ds=\frac{1}{\sqrt{2g}}\int_{0}^{y} \frac{\sqrt{1+x'(y)^2}}{\sqrt{y}} \, dy</math> | ||
+ | |||
+ | 문제의 정의에 따라 이 적분값을 최소가 되게 하는 곡선을 찾아야 한다. | ||
+ | |||
+ | <math>F(y,x,x')=\frac{\sqrt{1+(x')^2}}{\sqrt{y}}</math> 에 대하여 [[오일러-라그랑지 방정식]] 을 적용하면, | ||
+ | |||
+ | <math>0 =\frac{\partial F}{\partial x} - \frac{d}{dy} \frac{\partial F}{\partial x'}=-\frac{d}{dy}(\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}})</math> | ||
+ | |||
+ | 적당한 상수 a에 대하여 <math>\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}}=\frac{1}{\sqrt{2a}}</math>라 두자. | ||
+ | |||
+ | 이를 풀면 <math>\frac{dx}{dy}=\sqrt{{\frac{y}{2a-y}}</math> 를 얻는다. | ||
+ | |||
+ | <math>x=\int_{0}^{y}\sqrt{\frac{y}{2a-y}}dy</math> | ||
+ | |||
+ | <math>y=2a\sin^2\frac{\theta}{2}=a(1-\cos\theta)</math>로 치환하면, <math>x=a(\theta-\sin\theta)</math>를 얻는다. | ||
+ | |||
+ | 따라서 사이클로이드를 얻는다. | ||
+ | |||
+ | |||
+ | |||
+ | |||
70번째 줄: | 104번째 줄: | ||
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q=cycloid | ||
* 1634 - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] 사이클로이드 아래의 면적이 기본원 면적의 세 배임을 증명 | * 1634 - [http://en.wikipedia.org/wiki/Gilles_de_Roberval Gilles de Roberval] 사이클로이드 아래의 면적이 기본원 면적의 세 배임을 증명 | ||
* 1658 - [http://en.wikipedia.org/wiki/Christopher_Wren Christopher Wren] 사이클로이드의 길이가 기본원 지름의 네 배임을 증명 | * 1658 - [http://en.wikipedia.org/wiki/Christopher_Wren Christopher Wren] 사이클로이드의 길이가 기본원 지름의 네 배임을 증명 | ||
85번째 줄: | 120번째 줄: | ||
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">수학용어번역</h5> | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">수학용어번역</h5> | ||
− | * Brachistochrone curve | + | * Brachistochrone curve<br> |
− | * brachistos - the shortest, chronos - time | + | ** brachistos - the shortest, chronos - time |
− | * 최단시간강하 곡선 | + | ** 최단시간강하 곡선 |
− | * Tautochrone problem | + | * Tautochrone problem<br> |
− | * 등시강하곡선 문제 | + | ** 등시강하곡선 문제 |
* [http://www.google.com/dictionary?langpair=en%7Cko&q=Brachistochrone http://www.google.com/dictionary?langpair=en|ko&q=Brachistochrone] | * [http://www.google.com/dictionary?langpair=en%7Cko&q=Brachistochrone http://www.google.com/dictionary?langpair=en|ko&q=Brachistochrone] | ||
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
122번째 줄: | 157번째 줄: | ||
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련도서</h5> | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련도서</h5> | ||
+ | |||
+ | * [http://books.google.com/books?id=dptKVr-5LJAC Classical Mechanics]<br> | ||
+ | ** Rana & Joag | ||
+ | ** chapter 7 | ||
* 도서내검색<br> | * 도서내검색<br> |
2010년 9월 27일 (월) 18:47 판
이 항목의 스프링노트 원문주소
- 사이클로이드
개요
- 직선을 따라서 원을 굴릴때, 원 위의 한 점이 그리는 궤적을 사이클로이드라 함
- 원점에서 출발하여 반지름이 \(r\)인 원을 통해서 얻어지는 사이클로이드의 방정식
\(x = r(t - \sin t)\)
\(y = r(1 - \cos t)\)
- 등시성 문제와 최단시간강하곡선 문제의 답이다
[/pages/4402517/attachments/2339125 cycloid.gif]
등시강하곡선 문제 (Tautochrone problem)
- 중력을 받고 있는 물체가 출발점에 관계없이 주어진 목적지에 똑같은 시간에 도달하기 위해서 따라야 하는 곡선
- 1659년 호이겐스에 의해 해결
[/pages/4402517/attachments/2339131 Tautochrone_curve(1).gif]
최단시간강하곡선 문제(Brachistochrone problem)
- 중력을 받고 있는 물체가 정지상태에서 출발하여 가장 짧은 시간내에 하강하기 위해서 따라야 하는 곡선
- 1697년에 베르누이에 의하여 답이 출판
[/pages/4402517/attachments/2339127 figure3.gif]
곡선의 시작점을 \(x(0)=y(0)=0 ì´ëê¹\),
곡선을 따라 내려올때 걸리는 시간은 다음과 같이 구할 수 있다.
\(t=\int \frac{1}{v} \, ds\)(v는 속력, ds 는 길이요소, t는 시간)
에너지 보존 법칙 \(mgy=\frac{1}{2}mv^2\) 에서\(v=\sqrt{2gy}\).
이제 곡선의 x좌표를 y의 함수로 생각하자. 곡선을 따라 내려올 때 걸리는 시간은
\(T=\int \frac{1}{v} \, ds=\frac{1}{\sqrt{2g}}\int_{0}^{y} \frac{\sqrt{1+x'(y)^2}}{\sqrt{y}} \, dy\)
문제의 정의에 따라 이 적분값을 최소가 되게 하는 곡선을 찾아야 한다.
\(F(y,x,x')=\frac{\sqrt{1+(x')^2}}{\sqrt{y}}\) 에 대하여 오일러-라그랑지 방정식 을 적용하면,
\(0 =\frac{\partial F}{\partial x} - \frac{d}{dy} \frac{\partial F}{\partial x'}=-\frac{d}{dy}(\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}})\)
적당한 상수 a에 대하여 \(\frac{x'(y)}{\sqrt{y(1+x'(y)^2)}}=\frac{1}{\sqrt{2a}}\)라 두자.
이를 풀면 \(\frac{dx}{dy}=\sqrt{{\frac{y}{2a-y}}\) 를 얻는다.
\(x=\int_{0}^{y}\sqrt{\frac{y}{2a-y}}dy\)
\(y=2a\sin^2\frac{\theta}{2}=a(1-\cos\theta)\)로 치환하면, \(x=a(\theta-\sin\theta)\)를 얻는다.
따라서 사이클로이드를 얻는다.
재미있는 사실
- 수학에서의 '불화의 사과' - http://navercast.naver.com/science/math/807
메모
- 요한 베르누이의 생각 - 빛이 밀도가 점점 증가하는 물질의 (중력을 받고 있는...) 연속적인 층을 통과할 때 만드는 곡선
많이 나오는 질문
역사
- 수학사연표
- http://www.google.com/search?hl=en&tbs=tl:1&q=cycloid
- 1634 - Gilles de Roberval 사이클로이드 아래의 면적이 기본원 면적의 세 배임을 증명
- 1658 - Christopher Wren 사이클로이드의 길이가 기본원 지름의 네 배임을 증명
관련된 항목들
수학용어번역
- Brachistochrone curve
- brachistos - the shortest, chronos - time
- 최단시간강하 곡선
- Tautochrone problem
- 등시강하곡선 문제
- http://www.google.com/dictionary?langpair=en|ko&q=Brachistochrone
- 대한수학회 수학 학술 용어집
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/사이클로이드
- http://en.wikipedia.org/wiki/cycloid
- http://en.wikipedia.org/wiki/Brachistochrone_problem
- http://en.wikipedia.org/wiki/Tautochrone_problem
- http://www.wolframalpha.com/input/?i=cycloid
- http://www-history.mcs.st-and.ac.uk/Curves/Cycloid.html
관련논문
관련도서
- Classical Mechanics
- Rana & Joag
- chapter 7
- 도서내검색
- 도서검색
관련기사
- http://news.naver.com/main/read.nhn?mode=LSD&mid=sec&sid1=102&oid=028&aid=0000049908
- http://news.donga.com/3/all/20100924/31375838/1
- 네이버 뉴스 검색 (키워드 수정)