"슬레이터 18"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
이 항목의 수학노트 원문주소==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소== |
* [[슬레이터 18]] | * [[슬레이터 18]] | ||
7번째 줄: | 7번째 줄: | ||
− | ==개요 | + | ==개요== |
* [[로저스-라마누잔 항등식]] 의 하나<br><math>\sum_{n=0}^{\infty}\frac{q^{n(n+1)}}{ (q)_{n}}=\frac{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{2};q^{5})_{\infty}(q^{3};q^{5})_{\infty}}</math><br> | * [[로저스-라마누잔 항등식]] 의 하나<br><math>\sum_{n=0}^{\infty}\frac{q^{n(n+1)}}{ (q)_{n}}=\frac{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{2};q^{5})_{\infty}(q^{3};q^{5})_{\infty}}</math><br> | ||
16번째 줄: | 16번째 줄: | ||
− | ==항등식의 분류 | + | ==항등식의 분류== |
* [[슬레이터 목록 (Slater's list)]] | * [[슬레이터 목록 (Slater's list)]] | ||
25번째 줄: | 25번째 줄: | ||
− | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">켤레 베일리 쌍의 유도 | + | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">켤레 베일리 쌍의 유도== |
* [[q-가우스 합]] 에서 얻어진 다음 결과를 이용<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>, <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br><math>\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}</math><br> | * [[q-가우스 합]] 에서 얻어진 다음 결과를 이용<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>, <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br><math>\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}</math><br> | ||
35번째 줄: | 35번째 줄: | ||
− | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베일리 쌍의 유도 | + | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베일리 쌍의 유도== |
* 다음을 이용 '''[Slater51] '''(4.1)<br><math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math><br> | * 다음을 이용 '''[Slater51] '''(4.1)<br><math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math><br> | ||
45번째 줄: | 45번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베일리 쌍 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베일리 쌍== |
* 베일리 쌍과 켤레 베일리 쌍<br><math>\delta_n=q^{n^2}</math><br><math>\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}</math><br><math>\alpha_{0}=1</math>, <math>\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{1}{2}n}+q^{-\frac{1}{2}n})</math><br><math>\beta_n=\frac{1}{(q)_{n}}</math><br> | * 베일리 쌍과 켤레 베일리 쌍<br><math>\delta_n=q^{n^2}</math><br><math>\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}</math><br><math>\alpha_{0}=1</math>, <math>\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{1}{2}n}+q^{-\frac{1}{2}n})</math><br><math>\beta_n=\frac{1}{(q)_{n}}</math><br> | ||
53번째 줄: | 53번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-series 항등식 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-series 항등식== |
* 항등식<br><math>\sum_{n=0}^{\infty}\frac{q^{n^2}}{ (q)_{n}}=\frac{(q^{3};q^{5})_{\infty}(q^{2};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}}</math><br> | * 항등식<br><math>\sum_{n=0}^{\infty}\frac{q^{n^2}}{ (q)_{n}}=\frac{(q^{3};q^{5})_{\infty}(q^{2};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}}</math><br> | ||
68번째 줄: | 68번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베테 타입 방정식 (cyclotomic equation) | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베테 타입 방정식 (cyclotomic equation)== |
Let <math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ | Let <math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ | ||
91번째 줄: | 91번째 줄: | ||
− | <h5 style="line-height: 2em; margin: 0px;">다이로그 항등식 | + | <h5 style="line-height: 2em; margin: 0px;">다이로그 항등식== |
<math>L(\frac{3-\sqrt{5}}{2})=\frac{1}{15}\pi^2</math> | <math>L(\frac{3-\sqrt{5}}{2})=\frac{1}{15}\pi^2</math> | ||
105번째 줄: | 105번째 줄: | ||
− | ==관련된 항목들 | + | ==관련된 항목들== |
* [[로저스-라마누잔 연분수]] | * [[로저스-라마누잔 연분수]] |
2012년 11월 1일 (목) 12:53 판
이 항목의 수학노트 원문주소==
개요
- 로저스-라마누잔 항등식 의 하나
\(\sum_{n=0}^{\infty}\frac{q^{n(n+1)}}{ (q)_{n}}=\frac{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{2};q^{5})_{\infty}(q^{3};q^{5})_{\infty}}\)
- 슬레이터 14 는 또다른 로저스-라마누잔 항등식
항등식의 분류
켤레 베일리 쌍의 유도==
- q-가우스 합 에서 얻어진 다음 결과를 이용
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
\(\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}\)
- 다음의 특수한 경우
\(x=q,y\to\infty, z\to\infty\)
- 얻어진 켤레 베일리 쌍 (relative to 1)
\(\delta_n=q^{n^2}\)
\(\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}\)
베일리 쌍의 유도==
- 다음을 이용 [Slater51] (4.1)
\(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
- 다음의 특수한 경우
\(a=1,c\to\infty,d\to\infty\)
- 얻어진 베일리 쌍 (relative to 1)
\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{1}{2}n}+q^{-\frac{1}{2}n})\)
\(\beta_n=\frac{1}{(q)_{n}}\)
\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q)_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}}\)
베일리 쌍==
- 베일리 쌍과 켤레 베일리 쌍
\(\delta_n=q^{n^2}\)
\(\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}\)
\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{1}{2}n}+q^{-\frac{1}{2}n})\)
\(\beta_n=\frac{1}{(q)_{n}}\)
q-series 항등식==
- 항등식
\(\sum_{n=0}^{\infty}\frac{q^{n^2}}{ (q)_{n}}=\frac{(q^{3};q^{5})_{\infty}(q^{2};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}}\)
- 베일리 쌍(Bailey pair)과 베일리 보조정리
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
\(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{n^2}}{(q)_{n}}\)
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{1+\sum_{n=1}^{\infty}(-1)^{n}(q^{\frac{5n^2+n}{2}}+q^{\frac{5n^2-n}{2}})}{(q)_{\infty}}=\frac{(q^{3};q^{5})_{\infty}(q^{2};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}}\)
베테 타입 방정식 (cyclotomic equation)==
Let \(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{
\prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).
Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\) has a unique root \(0<\mu<1\). We get
\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)
a=2,d=1,e=1
\((1-x)^{1}=x^{2}\).
\(x=\frac{\sqrt{5}-1}{2}\)
\(4L(\frac{3-\sqrt{5}}{2})=\frac{2}{5}(\frac{2}{3}\pi^2)=\frac{4}{15}\pi^2\)
다이로그 항등식==
\(L(\frac{3-\sqrt{5}}{2})=\frac{1}{15}\pi^2\)
\(L(\frac{\sqrt{5}-1}{2})=\frac{1}{10}\pi^2\)
관련된 항목들
\(\sum_{n=0}^{\infty}\frac{q^{n(n+1)}}{ (q)_{n}}=\frac{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{2};q^{5})_{\infty}(q^{3};q^{5})_{\infty}}\)
- q-가우스 합 에서 얻어진 다음 결과를 이용
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
\(\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}\) - 다음의 특수한 경우
\(x=q,y\to\infty, z\to\infty\) - 얻어진 켤레 베일리 쌍 (relative to 1)
\(\delta_n=q^{n^2}\)
\(\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}\)
베일리 쌍의 유도==
- 다음을 이용 [Slater51] (4.1)
\(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
- 다음의 특수한 경우
\(a=1,c\to\infty,d\to\infty\)
- 얻어진 베일리 쌍 (relative to 1)
\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{1}{2}n}+q^{-\frac{1}{2}n})\)
\(\beta_n=\frac{1}{(q)_{n}}\)
\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q)_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}}\)
\(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
\(a=1,c\to\infty,d\to\infty\)
\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{1}{2}n}+q^{-\frac{1}{2}n})\)
\(\beta_n=\frac{1}{(q)_{n}}\)
\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q)_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}}\)
베일리 쌍==
- 베일리 쌍과 켤레 베일리 쌍
\(\delta_n=q^{n^2}\)
\(\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}\)
\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{1}{2}n}+q^{-\frac{1}{2}n})\)
\(\beta_n=\frac{1}{(q)_{n}}\)
\(\delta_n=q^{n^2}\)
\(\gamma_n=\frac{q^{n^2}}{(q)_{\infty}}\)
\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{\frac{3}{2}n^2}(q^{\frac{1}{2}n}+q^{-\frac{1}{2}n})\)
\(\beta_n=\frac{1}{(q)_{n}}\)
q-series 항등식==
- 항등식
\(\sum_{n=0}^{\infty}\frac{q^{n^2}}{ (q)_{n}}=\frac{(q^{3};q^{5})_{\infty}(q^{2};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}}\)
- 베일리 쌍(Bailey pair)과 베일리 보조정리
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
\(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{n^2}}{(q)_{n}}\)
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{1+\sum_{n=1}^{\infty}(-1)^{n}(q^{\frac{5n^2+n}{2}}+q^{\frac{5n^2-n}{2}})}{(q)_{\infty}}=\frac{(q^{3};q^{5})_{\infty}(q^{2};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}}\)
\(\sum_{n=0}^{\infty}\frac{q^{n^2}}{ (q)_{n}}=\frac{(q^{3};q^{5})_{\infty}(q^{2};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}}\)
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
\(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{n^2}}{(q)_{n}}\)
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{1+\sum_{n=1}^{\infty}(-1)^{n}(q^{\frac{5n^2+n}{2}}+q^{\frac{5n^2-n}{2}})}{(q)_{\infty}}=\frac{(q^{3};q^{5})_{\infty}(q^{2};q^{5})_{\infty}(q^{5};q^{5})_{\infty}}{(q)_{\infty}}=\frac{1}{(q^{1};q^{5})_{\infty}(q^{4};q^{5})_{\infty}}\)