"자코비 세타함수"의 두 판 사이의 차이
37번째 줄: | 37번째 줄: | ||
(증명) | (증명) | ||
− | [[포아송의 덧셈 공식]] | + | [[포아송의 덧셈 공식]]을 사용한다. |
<math>\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)</math> | <math>\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>f(x)=e^{\pi i x^2\tau</math> | ||
+ | |||
+ | <math>\hat{f}(\xi)=\sqrt{\frac{i}{\tau}}e^{-\pi i\frac{\xi^2}{\tau}</math> | ||
+ | |||
+ | <math>\theta(\tau)= \sum_{\in \mathbb Z} \exp(\pi i n^2\tau)=\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)=\sqrt{\frac{i}{\tau}}\sum_{n\in \mathbb Z}e^{-\pi i n^2 \frac{1}{\tau}}=\sqrt{\frac{i}{\tau}}\theta(-\frac{1}{\tau})</math> (증명끝) | ||
+ | |||
+ | |||
2009년 8월 18일 (화) 10:44 판
간단한 소개
- 세타함수의 정의 (spectral decomposition of heat kernel)
\(\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty \exp(\pi i n^2\tau)\), \(q=e^{2\pi i \tau}\)
\(\theta_{2}(\tau)= \sum_{n=-\infty}^\infty q^{(n+\frac{1}{2})^2/2}\)
\(\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\)
여러가지 공식들
\(\theta_2^4(q)+\theta_4^4(q)=\theta_3^4(q)\)
\(\theta_3^2(q^2)+\theta_2^2(q^2)=\theta_3^2(q)\)
\(\theta_3^2(q^2)-\theta_2^2(q^2)=\theta_3^2(q)\)
세타함수의 Modularity
\(\theta(-\frac{1}{\tau})=\sqrt{\frac{\tau}{i}} \theta({\tau})\)
\(\tau=iy, y>0\) 으로 쓰면,
\(\theta(\frac{i}{y})=\sqrt{y} \theta({iy)\)
(증명)
포아송의 덧셈 공식을 사용한다.
\(\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)\)
\(f(x)=e^{\pi i x^2\tau\)
\(\hat{f}(\xi)=\sqrt{\frac{i}{\tau}}e^{-\pi i\frac{\xi^2}{\tau}\)
\(\theta(\tau)= \sum_{\in \mathbb Z} \exp(\pi i n^2\tau)=\sum_{n\in \mathbb Z}f(n)=\sum_{n\in \mathbb Z}\hat{f}(n)=\sqrt{\frac{i}{\tau}}\sum_{n\in \mathbb Z}e^{-\pi i n^2 \frac{1}{\tau}}=\sqrt{\frac{i}{\tau}}\theta(-\frac{1}{\tau})\) (증명끝)
Triple product 공식
\(\sum_{n=-\infty}^\infty z^{n}q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + zq^{2m-1}\right) \left( 1 + z^{-1}q^{2m-1}\right)\)
\(z=1\) 인 경우
\(\sum_{n=-\infty}^\infty q^{n^2}= \prod_{m=1}^\infty \left( 1 - q^{2m}\right) \left( 1 + q^{2m-1}\right)^2\)
세타함수와 singular modulus
\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)
\(k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}\)
세타함수, AGM iteration, 타원적분
\(\frac{\theta_3^2(q)+\theta_4^2(q)}{2}=\theta_3(q^2)\)
\(\sqrt{\theta_3^2(q)\theta_4^2(q)}=\theta_4^2(q^2)\)
따라서 \(a_n=\theta_3^2(q^{2^n}),b_n=\theta_4^2(q^{2^n})\) 라 하면, \(a_n, b_n\)은 AGM iteration 을 만족하고 \(\lim_{n\to\infty}a_n=1\)이고, \(1=M(\theta_3^2(q),\theta_4^2(q))\)가 된다.
(정리)
주어진 \(0<k<1\) 에 대하여, \(k=k(q)=\frac{\theta_2^2(q)}{\theta_3^2(q)}\)를 만족시키는 \(q\)가 존재한다. 이 때,
\(M(1,k')=\theta_3^{-2}(q)\) 와 \(K(k) = \frac{\pi}{2}\theta_3^2(q)\)가 성립한다.\(K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}} = \frac{\pi}{2}\theta_3^2(q)\)
(증명)
\(1=M(\theta_3^2(q),\theta_4^2(q))=\theta_3^{2}(q)M(1,\frac{\theta_4^2(q)}{\theta_3^2(q)})=\theta_3^{2}(q)M(1,k')\)
그러므로, \(M(1,k')=\theta_3^{-2}(q)\)이다.
한편, 란덴변환에 의해 \(K(k)=\frac{\pi}{2M(1,\sqrt{1-k^2})}\)가 성립(타원적분과 AGM의 관계 , 란덴변환과 AGM 참조)하므로, \(K(k) = \frac{\pi}{2}\theta_3^2(q)\)도 증명된다. (증명끝)
관련된 학부 과목과 미리 알고 있으면 좋은 것들
관련된 대학원 과목
관련된 다른 주제들
표준적인 도서 및 추천도서
- Brief Introduction to Theta Functions
- BELLMAN, RICHARD
- Tata Lectures on Theta I,II,III
- David Mumford
위키링크
참고할만한 자료
- On a classical theta-function
- Tomio Kubota, Nagoya Math. J. Volume 37 (1970), 183-189
- Applications of Theta Functions to Arithmetic
- G. D. Nichols, The American Mathematical Monthly, Vol. 45, No. 6 (Jun. - Jul., 1938), pp. 363-368
- A First Course in Modular Forms (Graduate Texts in Mathematics)
- Fred Diamond and Jerry Shurman, 18-19p four_square_theorem_and_theta_funtion.pdf
- Karl Gustav Jacob Jacobi
- Jacobi's Four Square Theorem. (Also available in postscript format [11 pages].) [CONSTRUCTION IN PROGRESS]
- Jacobi's Four Square Theorem. (Also available in postscript format [11 pages].) [CONSTRUCTION IN PROGRESS]