"푸앵카레 unit disk 모델"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* [[쌍곡기하학]]의 모델 | * [[쌍곡기하학]]의 모델 | ||
* [[푸앵카레 상반평면 모델]] 과 동형 | * [[푸앵카레 상반평면 모델]] 과 동형 | ||
− | + | ||
− | + | ||
− | + | ==정의== | |
* <math>\mathbb{D}^2=\{z=x+iy:|z|=\sqrt{x^2+y^2} < 1 \}</math> | * <math>\mathbb{D}^2=\{z=x+iy:|z|=\sqrt{x^2+y^2} < 1 \}</math> | ||
− | + | ||
− | + | ||
− | + | ==제1기본형식== | |
* 리만 메트릭<br><math>ds^2=\frac{4(dx^2+dy^2)}{\left(1-x^2-y^2\right)^2}=\frac{4dzd\overline{z}}{(1-|z|^2)^2}</math><br> | * 리만 메트릭<br><math>ds^2=\frac{4(dx^2+dy^2)}{\left(1-x^2-y^2\right)^2}=\frac{4dzd\overline{z}}{(1-|z|^2)^2}</math><br> | ||
32번째 줄: | 24번째 줄: | ||
* <math>G=\frac{4}{\left(1-x^2-y^2\right)^2}</math> | * <math>G=\frac{4}{\left(1-x^2-y^2\right)^2}</math> | ||
− | + | ||
− | + | ||
− | + | ==크리스토펠 기호== | |
− | * [[크리스토펠 기호]]<br><math>\begin{array}{ll} \Gamma _{11}^1 & -\frac{2 x}{-1+x^2+y^2} \\ \Gamma _{12}^1 & -\frac{2 y}{-1+x^2+y^2} \\ \Gamma _{21}^1 & -\frac{2 y}{-1+x^2+y^2} \\ \Gamma _{22}^1 & \frac{2 x}{-1+x^2+y^2} \\ \Gamma _{11}^2 & \frac{2 y}{-1+x^2+y^2} \\ \Gamma _{12}^2 & -\frac{2 x}{-1+x^2+y^2} \\ \Gamma _{21}^2 & -\frac{2 x}{-1+x^2+y^2} \\ \Gamma _{22}^2 & -\frac{2 y}{-1+x^2+y^2} \end{array}</math><br> | + | * [[크리스토펠 기호]]<br><math>\begin{array}{ll} \Gamma _ {11}^1 & -\frac{2 x}{-1+x^2+y^2} \\ \Gamma _ {12}^1 & -\frac{2 y}{-1+x^2+y^2} \\ \Gamma _ {21}^1 & -\frac{2 y}{-1+x^2+y^2} \\ \Gamma _ {22}^1 & \frac{2 x}{-1+x^2+y^2} \\ \Gamma _ {11}^2 & \frac{2 y}{-1+x^2+y^2} \\ \Gamma _ {12}^2 & -\frac{2 x}{-1+x^2+y^2} \\ \Gamma _ {21}^2 & -\frac{2 x}{-1+x^2+y^2} \\ \Gamma _ {22}^2 & -\frac{2 y}{-1+x^2+y^2} \end{array}</math><br> |
* [[가우스 곡률|가우스곡률]] 은 -1 이다 | * [[가우스 곡률|가우스곡률]] 은 -1 이다 | ||
− | + | ||
− | + | ||
− | + | ==라플라시안== | |
− | * [[라플라시안(Laplacian)|라플라시안]]<br><math>\Delta f=\frac{1}{4} \left(1-x^2-y^2\right)^2\left(\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}\right)</math><br> | + | * [[라플라시안(Laplacian)|라플라시안]]<br><math>\Delta f=\frac{1}{4} \left(1-x^2-y^2\right)^2\left(\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}\right)</math><br> <br> |
− | + | ||
− | + | ==측지선== | |
− | * [[측지선]]이 만족시키는 미분방정식은 다음과 같다 | + | * [[측지선]]이 만족시키는 미분방정식은 다음과 같다 |
− | * 계산된 크리스토펠 심볼을 사용하면<br><math>x''(t)+\frac{2 x y'(t)^2}{x^2+y^2-1}-\frac{2 x x'(t)^2}{x^2+y^2-1}-\frac{4 y x'(t) y'(t)}{x^2+y^2-1}</math><br><math>y''(t)-\frac{2 y y'(t)^2}{x^2+y^2-1}+\frac{2 y x'(t)^2}{x^2+y^2-1}-\frac{4 x x'(t) y'(t)}{x^2+y^2-1}=0</math><br> | + | :<math>\frac{d^2 x}{dt^2} + \Gamma^{1}_{~1 2 }\frac{dx }{dt}\frac{dy }{dt} +\Gamma^{1}_{~2 1}\frac{dx }{dt}\frac{dy }{dt}= 0</math> |
+ | :<math>\frac{d^2 y }{dt^2} + \Gamma^{2}_{~1 1 }\frac{dx }{dt}\frac{dx }{dt}+\Gamma^{2}_ {~2 2}\frac{dy }{dt}\frac{dy }{dt} = 0</math><br> | ||
+ | * 계산된 크리스토펠 심볼을 사용하면<br><math>x''(t)+\frac{2 x y'(t)^2}{x^2+y^2-1}-\frac{2 x x'(t)^2}{x^2+y^2-1}-\frac{4 y x'(t) y'(t)}{x^2+y^2-1}=0</math><br><math>y''(t)-\frac{2 y y'(t)^2}{x^2+y^2-1}+\frac{2 y x'(t)^2}{x^2+y^2-1}-\frac{4 x x'(t) y'(t)}{x^2+y^2-1}=0</math><br> | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ==리만 텐서== | |
− | <math>\begin{array}{ll} \begin{array}{ll} R_{111}^1 & 0 \\ R_{112}^1 & 0 \end{array} & \begin{array}{ll} R_{121}^1 & 0 \\ R_{122}^1 & 0 \end{array} \\ \begin{array}{ll} R_{211}^1 & 0 \\ R_{212}^1 & -\frac{4}{\left(x^2+y^2-1\right)^2} \end{array} & \begin{array}{ll} R_{221}^1 & \frac{4}{\left(x^2+y^2-1\right)^2} \\ R_{222}^1 & 0 \end{array} \\ \begin{array}{ll} R_{111}^2 & 0 \\ R_{112}^2 & \frac{4}{\left(x^2+y^2-1\right)^2} \end{array} & \begin{array}{ll} R_{121}^2 & -\frac{4}{\left(x^2+y^2-1\right)^2} \\ R_{122}^2 & 0 \end{array} \\ \begin{array}{ll} R_{211}^2 & 0 \\ R_{212}^2 & 0 \end{array} & \begin{array}{ll} R_{221}^2 & 0 \\ R_{222}^2 & 0 \end{array} \end{array}</math> | + | <math>\begin{array}{ll} \begin{array}{ll} R_ {111}^1 & 0 \\ R_ {112}^1 & 0 \end{array} & \begin{array}{ll} R_ {121}^1 & 0 \\ R_ {122}^1 & 0 \end{array} \\ \begin{array}{ll} R_ {211}^1 & 0 \\ R_ {212}^1 & -\frac{4}{\left(x^2+y^2-1\right)^2} \end{array} & \begin{array}{ll} R_ {221}^1 & \frac{4}{\left(x^2+y^2-1\right)^2} \\ R_ {222}^1 & 0 \end{array} \\ \begin{array}{ll} R_ {111}^2 & 0 \\ R_ {112}^2 & \frac{4}{\left(x^2+y^2-1\right)^2} \end{array} & \begin{array}{ll} R_ {121}^2 & -\frac{4}{\left(x^2+y^2-1\right)^2} \\ R_ {122}^2 & 0 \end{array} \\ \begin{array}{ll} R_ {211}^2 & 0 \\ R_ {212}^2 & 0 \end{array} & \begin{array}{ll} R_ {221}^2 & 0 \\ R_ {222}^2 & 0 \end{array} \end{array}</math> |
− | + | ||
− | + | ||
− | + | ==역사== | |
− | + | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
− | + | ||
− | + | ||
− | + | ==메모== | |
* http://egl.math.umd.edu/software.html | * http://egl.math.umd.edu/software.html | ||
87번째 줄: | 81번째 줄: | ||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
− | + | ||
− | + | ||
− | + | ==관련된 항목들== | |
* [[케일리 뫼비우스 변환]] | * [[케일리 뫼비우스 변환]] | ||
* [[에셔 스타일의 그림그리기]] | * [[에셔 스타일의 그림그리기]] | ||
− | + | ||
− | + | ||
− | + | ==수학용어번역== | |
* 단어사전<br> | * 단어사전<br> | ||
** http://translate.google.com/#en|ko| | ** http://translate.google.com/#en|ko| | ||
** http://ko.wiktionary.org/wiki/ | ** http://ko.wiktionary.org/wiki/ | ||
− | * | + | * 발음사전 http://www.forvo.com/search/ |
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | * [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | ||
* [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기] | * [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기] | ||
− | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA | + | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남북한수학용어비교] |
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 | + | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
− | + | ||
− | + | ||
− | + | ==매스매티카 파일 및 계산 리소스== | |
* https://docs.google.com/file/d/0B8XXo8Tve1cxcFpvZmhCal9QSDQ/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxcFpvZmhCal9QSDQ/edit | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
− | |||
− | |||
− | |||
− | |||
− | |||
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | * [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | ||
− | + | ||
− | + | ||
− | + | ==사전 형태의 자료== | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
141번째 줄: | 130번째 줄: | ||
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
− | + | ||
− | + | ||
− | + | ==리뷰논문, 에세이, 강의노트== | |
* [http://www.springerlink.com/content/p851285722082v63/ Henri Poincaré and the Disc Model of non-Euclidean Geometry] | * [http://www.springerlink.com/content/p851285722082v63/ Henri Poincaré and the Disc Model of non-Euclidean Geometry] | ||
− | + | ||
− | + | ||
− | + | ==관련논문== | |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
159번째 줄: | 148번째 줄: | ||
* http://dx.doi.org/ | * http://dx.doi.org/ | ||
− | + | ||
− | + | ||
− | + | ==관련도서== | |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 9월 8일 (토) 22:59 판
개요
- 쌍곡기하학의 모델
- 푸앵카레 상반평면 모델 과 동형
정의
- \(\mathbb{D}^2=\{z=x+iy:|z|=\sqrt{x^2+y^2} < 1 \}\)
제1기본형식
- 리만 메트릭
\(ds^2=\frac{4(dx^2+dy^2)}{\left(1-x^2-y^2\right)^2}=\frac{4dzd\overline{z}}{(1-|z|^2)^2}\)
- \(E=\frac{4}{\left(1-x^2-y^2\right)^2}\)
- \(F=0\)
- \(G=\frac{4}{\left(1-x^2-y^2\right)^2}\)
크리스토펠 기호
- 크리스토펠 기호
\(\begin{array}{ll} \Gamma _ {11}^1 & -\frac{2 x}{-1+x^2+y^2} \\ \Gamma _ {12}^1 & -\frac{2 y}{-1+x^2+y^2} \\ \Gamma _ {21}^1 & -\frac{2 y}{-1+x^2+y^2} \\ \Gamma _ {22}^1 & \frac{2 x}{-1+x^2+y^2} \\ \Gamma _ {11}^2 & \frac{2 y}{-1+x^2+y^2} \\ \Gamma _ {12}^2 & -\frac{2 x}{-1+x^2+y^2} \\ \Gamma _ {21}^2 & -\frac{2 x}{-1+x^2+y^2} \\ \Gamma _ {22}^2 & -\frac{2 y}{-1+x^2+y^2} \end{array}\) - 가우스곡률 은 -1 이다
라플라시안
- 라플라시안
\(\Delta f=\frac{1}{4} \left(1-x^2-y^2\right)^2\left(\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}\right)\)
측지선
- 측지선이 만족시키는 미분방정식은 다음과 같다
\[\frac{d^2 x}{dt^2} + \Gamma^{1}_{~1 2 }\frac{dx }{dt}\frac{dy }{dt} +\Gamma^{1}_{~2 1}\frac{dx }{dt}\frac{dy }{dt}= 0\]
\[\frac{d^2 y }{dt^2} + \Gamma^{2}_{~1 1 }\frac{dx }{dt}\frac{dx }{dt}+\Gamma^{2}_ {~2 2}\frac{dy }{dt}\frac{dy }{dt} = 0\]
- 계산된 크리스토펠 심볼을 사용하면
\(x''(t)+\frac{2 x y'(t)^2}{x^2+y^2-1}-\frac{2 x x'(t)^2}{x^2+y^2-1}-\frac{4 y x'(t) y'(t)}{x^2+y^2-1}=0\)
\(y''(t)-\frac{2 y y'(t)^2}{x^2+y^2-1}+\frac{2 y x'(t)^2}{x^2+y^2-1}-\frac{4 x x'(t) y'(t)}{x^2+y^2-1}=0\)
리만 텐서
\(\begin{array}{ll} \begin{array}{ll} R_ {111}^1 & 0 \\ R_ {112}^1 & 0 \end{array} & \begin{array}{ll} R_ {121}^1 & 0 \\ R_ {122}^1 & 0 \end{array} \\ \begin{array}{ll} R_ {211}^1 & 0 \\ R_ {212}^1 & -\frac{4}{\left(x^2+y^2-1\right)^2} \end{array} & \begin{array}{ll} R_ {221}^1 & \frac{4}{\left(x^2+y^2-1\right)^2} \\ R_ {222}^1 & 0 \end{array} \\ \begin{array}{ll} R_ {111}^2 & 0 \\ R_ {112}^2 & \frac{4}{\left(x^2+y^2-1\right)^2} \end{array} & \begin{array}{ll} R_ {121}^2 & -\frac{4}{\left(x^2+y^2-1\right)^2} \\ R_ {122}^2 & 0 \end{array} \\ \begin{array}{ll} R_ {211}^2 & 0 \\ R_ {212}^2 & 0 \end{array} & \begin{array}{ll} R_ {221}^2 & 0 \\ R_ {222}^2 & 0 \end{array} \end{array}\)
역사
메모
- http://egl.math.umd.edu/software.html
- http://www-users.math.umd.edu/~rfhoban/Shadows/PoincareUnitDisk.nb
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxcFpvZmhCal9QSDQ/edit
- http://www.wolframalpha.com/input/?i=
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Poincaré_disk_model
- http://en.wikipedia.org/wiki/Poincaré_metric
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문