"데데킨트 제타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[데데킨트 제타함수]]
 
 
 
 
 
 
==기호==
 
==기호==
  
111번째 줄: 105번째 줄:
  
 
 
 
 
 
+
==계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxcXFHOEFSMHc1bUk/edit
 
 
 
 
  
==수학용어번역==
 
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
  
 
 
 
 
  
 
==사전 형태의 자료==
 
==사전 형태의 자료==
 +
* http://en.wikipedia.org/wiki/Dedekind_zeta_function
  
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Dedekind_zeta_function
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
  
 
 
 
 
153번째 줄: 135번째 줄:
 
*  Commensurability classes and volumes of hyperbolic 3-manifolds<br>
 
*  Commensurability classes and volumes of hyperbolic 3-manifolds<br>
 
** A. Borel, Ann. Sc. Norm. Super. Pisa8, 1–33 (1981)
 
** A. Borel, Ann. Sc. Norm. Super. Pisa8, 1–33 (1981)
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/
 
 
 
 
  
 
 
 
 
169번째 줄: 147번째 줄:
  
 
==관련링크와 웹페이지==
 
==관련링크와 웹페이지==
 
 
* [http://www.math.mcgill.ca/goren/ZetaValues/zeta.html Tables of Values of Dedekind Zeta Functions]
 
* [http://www.math.mcgill.ca/goren/ZetaValues/zeta.html Tables of Values of Dedekind Zeta Functions]

2013년 2월 2일 (토) 04:10 판

기호

  • \(K\) 수체
  • \(C_K\)  ideal class group

 

 

개요

  • 수체 \(K\)에 대하여, 데데킨트 제타함수는 다음과 같이 정의됨\[\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}\]

  • 전체 복소평면으로 해석적확장(analytic continuation) 되며, \(s=1\) 에서 simple pole을 가진다
  • \(s=1\) 에서의 유수 (유수정리(residue theorem) ) 는 디리클레 class number formula (http://en.wikipedia.org/wiki/Class_number_formula ) 로 주어진다\[ \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_K\cdot R_K}{w_K \cdot \sqrt{|D_K|}}\]
  • \(s=0\) 에서 order 가 \(r_1+r_2-1\) 인 zero를 가지며 다음이 성립한다\[ \lim_{s\to 0}\frac{\zeta_K(s)}{s^{r_1+r_2-1}}=-\frac{h_K R_K}{w_K}\]

 

 

함수방정식

  • 리만제타함수 의 함수방정식\[\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)\]\[\xi(s) = \xi(1 - s)\]
  • 리만제타함수는 \(K=\mathbb{Q}\) 인 경우, 즉  \(\zeta(s)=\zeta_{\mathbb{Q}}(s)\)
  • 데데킨트 제타함수에 대해서 다음과 같은 함수방정식이 성립\[\xi_{K}(s)=\left|d_K\right|{}^{s/2} 2^{r_2 (1-s)} \pi ^{\frac{1}{2} \left(-r_1-2 r_2\right) s}\Gamma \left(\frac{s}{2}\right)^{r_1} \Gamma (s)^{r_2}\zeta _K(s)\]\[\xi_{K}(s) = \xi_{K}(1 - s)\]

 

 

부분제타함수

  • 각각의 ideal class \(A\in C_K\) 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의\[\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}\]
  • 제타함수는 부분 데데킨트 제타함수의 합으로 쓰여지게 됨\[\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)\]
  • 더 일반적으로 준동형사상 \(\chi \colon C_K \to \mathbb C^{*}\)에 대하여, 일반화된 데데킨트 제타함수를 정의할 수 있음\[L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)\]

 

 

 

 

special values

 

 

 

Klingen-Siegel 정리

 

 

 

Zagier, Bloch, Suslin

  • \([K : \mathbb{Q}] = r_1 + 2r_2\)\[\zeta_{K}(2)\sim_{\mathbb{Q^{*}}} \frac{\pi^{2(r_1 + r_2)}}{\sqrt{|d_{K}|}}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}\]
    여기서 \(\xi_i,(i=1,\cdots, r_2)\) 는 Bloch group \(B(K)\otimes \mathbb{Q}\)의 Q-basis
    D는 Bloch-Wigner dilogarithm 함수\[a\sim b\] 는 \(a/b\in\mathbb{Q}\) 를 의미함

 

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

계산 리소스

 


 

사전 형태의 자료


 

리뷰논문, 에세이, 강의노트

 

 

관련논문

 

관련도서

 

 

 

관련링크와 웹페이지