"아벨-야코비 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
* [[아벨-야코비 정리]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
39번째 줄: 31번째 줄:
 
* [http://www.nd.edu/%7Elnicolae/Printu.pdf http://www.nd.edu/~lnicolae/Printu.pdf]
 
* [http://www.nd.edu/%7Elnicolae/Printu.pdf http://www.nd.edu/~lnicolae/Printu.pdf]
 
* http://modular.math.washington.edu/projects/kleinerman_99paper.pdf
 
* http://modular.math.washington.edu/projects/kleinerman_99paper.pdf
* Math Overflow http://mathoverflow.net/search?q=
 
 
 
 
  
 
 
 
 
48번째 줄: 37번째 줄:
 
* [[리만 곡면에서의 호지 이론(Hodge theory)]]
 
* [[리만 곡면에서의 호지 이론(Hodge theory)]]
 
 
 
 
 
 
 
 
==수학용어번역==
 
 
*  단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
 
 
 
68번째 줄: 42번째 줄:
 
 
 
 
  
==매스매티카 파일 및 계산 리소스==
 
 
*  
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
 
 
 
  
 
 
 
 
87번째 줄: 49번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* [http://en.wikipedia.org/wiki/Abel%E2%80%93Jacobi_map http://en.wikipedia.org/wiki/Abel–Jacobi_map]
 
* [http://en.wikipedia.org/wiki/Abel%E2%80%93Jacobi_map http://en.wikipedia.org/wiki/Abel–Jacobi_map]
* [http://www.encyclopediaofmath.org/index.php/Main_Page Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
 
 
 
 
 
 
 
==리뷰논문, 에세이, 강의노트==
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2013년 3월 27일 (수) 07:04 판

개요

  • 정의\[H_1(X, \mathbb{Z}) \cong \mathbb{Z}^{2g}\]를 생성하는 2g 개의 닫힌 곡선 \(\gamma_1, \dots, \gamma_{2g}\)\[H^0(X, K) \cong \mathbb{C}^g\]를 생성하는 g개의 holomorphic 1-form $\omega_1,\cdots,\omega_{g}$, 여기서 K는 X의 canonical bundle
    각 곡선 $\gamma_{j}$에 대하여, \(\Omega_j = \left(\int_{\gamma_j} \omega_1, \dots, \int_{\gamma_j} \omega_g\right) \in \mathbb{C}^g\)는 rank가 2g인 격자 \(\Lambda\)를 생성
  • 아벨-야코비 사상 \(u \colon X \to J(X)\)를 다음과 같이 정의함 \[u(p) = \left( \int_{p_0}^p \omega_1, \dots, \int_{p_0}^p \omega_g\right) \bmod \Lambda\]
  • u는 degree가 0인 divisor 에 대하여 정의되는 함수로 확장된다
  • u의 커널은 principal divisor로 주어지며 타원적분에 대한 덧셈정리의 일반화이며 아벨의 정리라 볼 수 있다
  • u는 전사함수이며, 이를 야코비 정리라 한다
  • 현대수학에서는 종수가 1이상인 컴팩트 리만곡면의 divisor class와 야코비안 사이에 동형사상이 있다고 표현한다

 

야코비안

  • $J(X)=\mathbb{C}^g/\Lambda$

 

역사

 

 

 

메모

 

관련된 항목들

 

 

 


 

사전 형태의 자료