"바이어슈트라스 타원함수 ℘"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
6번째 줄: | 6번째 줄: | ||
==정의== | ==정의== | ||
− | * 2차원격자를 이루는 두 복소수 <math>\omega_1,\omega_2</math>에 대하여, :<math>\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}</math>:<math>\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}</math | + | * 2차원격자를 이루는 두 복소수 <math>\omega_1,\omega_2</math>에 대하여, :<math>\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}</math>:<math>\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}</math> |
− | * 이중주기를 갖는 함수:<math>\wp(z+\omega_1)=\wp(z+\omega_2)=\wp(z)</math | + | * 이중주기를 갖는 함수:<math>\wp(z+\omega_1)=\wp(z+\omega_2)=\wp(z)</math> |
− | |||
− | |||
− | |||
− | |||
− | |||
==℘의 로랑급수== | ==℘의 로랑급수== | ||
− | * 원점에서의 로랑급수는 다음과 같이 주어짐.:<math>\wp(z)=z^{-2}+\frac{g_2}{20}z^2+\frac{g_3}{28}z^4+\frac{g_2^2}{1200}z^6+O(z^8)</math | + | * 원점에서의 로랑급수는 다음과 같이 주어짐. |
+ | :<math>\wp(z)=z^{-2}+\frac{g_2}{20}z^2+\frac{g_3}{28}z^4+\frac{g_2^2}{1200}z^6+O(z^8)</math> 여기서 <math>g_2= 60\sum{}' \omega_{m,n}^{-4}</math>, <math>g_3=140\sum{}' \omega_{m,n}^{-6}</math>< | ||
− | |||
− | + | ;증명 | |
<math>\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2) </math> 를 정의하자. | <math>\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2) </math> 를 정의하자. | ||
32번째 줄: | 27번째 줄: | ||
따라서 <math>\wp(z)=\frac{1}{z^2}-\sum_{n=2}^{\infty}(2n-1)G_{2n}z^{2n-2}</math>. | 따라서 <math>\wp(z)=\frac{1}{z^2}-\sum_{n=2}^{\infty}(2n-1)G_{2n}z^{2n-2}</math>. | ||
+ | * <math>G_{2n}</math>에 대해서는 [[모듈라 형식(modular forms)]]의 아이젠슈타인 급수 참조. | ||
− | |||
− | |||
− | |||
==미분방정식== | ==미분방정식== | ||
− | * 바이어슈트라스 타원함수는 다음 미분방정식을 만족시킴:<math>\wp'(z)^2=4\wp(z)^3-g_2\wp(z)-g_3</math | + | * 바이어슈트라스 타원함수는 다음 미분방정식을 만족시킴:<math>\wp'(z)^2=4\wp(z)^3-g_2\wp(z)-g_3</math> |
47번째 줄: | 40번째 줄: | ||
==도함수의 해== | ==도함수의 해== | ||
− | * <math>\wp(z)</math>는 우함수, <math>\wp'(z)</math>는 기함수임을 이용하면, <math>\wp'(\frac{\omega}{2})=0</math> 임을 증명할 수 있다 | + | * <math>\wp(z)</math>는 우함수, <math>\wp'(z)</math>는 기함수임을 이용하면, <math>\wp'(\frac{\omega}{2})=0</math> 임을 증명할 수 있다 |
− | * <math>e_1:=\wp(\frac{\omega_1}{2};\omega_1,\omega_2)</math>:<math>e_2:=\wp(\frac{\omega_2}{2};\omega_1,\omega_2)</math>:<math>e_3:=\wp(\frac{\omega_1+\omega_2}{2};\omega_1,\omega_2)</math | + | * <math>e_1:=\wp(\frac{\omega_1}{2};\omega_1,\omega_2)</math>:<math>e_2:=\wp(\frac{\omega_2}{2};\omega_1,\omega_2)</math>:<math>e_3:=\wp(\frac{\omega_1+\omega_2}{2};\omega_1,\omega_2)</math> |
− | * 다음 타원곡선의 branch points로 이해할 수 있음:<math>y^2=4x^3-g_2x-g_3=4(x-e_1)(x-e_2)(x-e_3)</math | + | * 다음 타원곡선의 branch points로 이해할 수 있음:<math>y^2=4x^3-g_2x-g_3=4(x-e_1)(x-e_2)(x-e_3)</math> |
79번째 줄: | 72번째 줄: | ||
==메모== | ==메모== | ||
− | * [http://www.maths.gla.ac.uk/%7Emengland/Conferences/Burnhandout.pdf http://www.maths.gla.ac.uk/~mengland/Conferences/Burnhandout.pdf] | + | * [http://www.maths.gla.ac.uk/%7Emengland/Conferences/Burnhandout.pdf http://www.maths.gla.ac.uk/~mengland/Conferences/Burnhandout.pdf] |
− | * The zeros of theWeierstrass }–function and hypergeometric series W. Duke and O¨ . Imamog¯lu [http://www.math.ucla.edu/%7Ewdduke/preprints/zeros.pdf http://www.math.ucla.edu/~wdduke/preprints/zeros.pdf] | + | * The zeros of theWeierstrass }–function and hypergeometric series W. Duke and O¨ . Imamog¯lu [http://www.math.ucla.edu/%7Ewdduke/preprints/zeros.pdf http://www.math.ucla.edu/~wdduke/preprints/zeros.pdf] |
− | * TeX symbol \wp, Unicode U+2118 | + | * TeX symbol \wp, Unicode U+2118 |
− | |||
− | |||
− | |||
95번째 줄: | 85번째 줄: | ||
− | + | ==매스매티카 파일 및 계산 리소스== | |
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxVHpIdmZmd3RGU2s/edit | ||
2014년 1월 26일 (일) 03:20 판
개요
- 타원함수의 예
정의
- 2차원격자를 이루는 두 복소수 \(\omega_1,\omega_2\)에 대하여, \[\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\]\[\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\]
- 이중주기를 갖는 함수\[\wp(z+\omega_1)=\wp(z+\omega_2)=\wp(z)\]
℘의 로랑급수
- 원점에서의 로랑급수는 다음과 같이 주어짐.
\[\wp(z)=z^{-2}+\frac{g_2}{20}z^2+\frac{g_3}{28}z^4+\frac{g_2^2}{1200}z^6+O(z^8)\] 여기서 \(g_2= 60\sum{}' \omega_{m,n}^{-4}\), \(g_3=140\sum{}' \omega_{m,n}^{-6}\)<
- 증명
\(\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2) \) 를 정의하자.
\(\wp(z)=-\zeta'(z)=\sum_{\omega\in \Omega} \frac{1}{(z-m)^2}- \frac{1}{\omega^2}\) 이므로 \(\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)\) 의 로랑급수를 구한 뒤, 미분을 하면 된다.
\(\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2}(-\frac{1}{\omega}-\frac{z}{\omega^2}-\frac{z^2}{\omega^3}-\cdots)\)
\(=\frac{1}{z}+\sum_{\omega \in \Omega}(-\frac{z^2}{\omega^3}-\frac{z^3}{\omega^4}-\frac{z^4}{\omega^5}-\cdots)=\frac{1}{z}-G_3z^2-G_4z^3-\cdots=\frac{1}{z}-\sum_{n=2}^{\infty}G_{2n}z^{2n-1}\). 여기서 \(G_{2n}=\sum_{\omega\in \Omega} \frac{1}{\omega^{2n}}\).
따라서 \(\wp(z)=\frac{1}{z^2}-\sum_{n=2}^{\infty}(2n-1)G_{2n}z^{2n-2}\).
- \(G_{2n}\)에 대해서는 모듈라 형식(modular forms)의 아이젠슈타인 급수 참조.
미분방정식
- 바이어슈트라스 타원함수는 다음 미분방정식을 만족시킴\[\wp'(z)^2=4\wp(z)^3-g_2\wp(z)-g_3\]
도함수의 해
- \(\wp(z)\)는 우함수, \(\wp'(z)\)는 기함수임을 이용하면, \(\wp'(\frac{\omega}{2})=0\) 임을 증명할 수 있다
- \(e_1:=\wp(\frac{\omega_1}{2};\omega_1,\omega_2)\)\[e_2:=\wp(\frac{\omega_2}{2};\omega_1,\omega_2)\]\[e_3:=\wp(\frac{\omega_1+\omega_2}{2};\omega_1,\omega_2)\]
- 다음 타원곡선의 branch points로 이해할 수 있음\[y^2=4x^3-g_2x-g_3=4(x-e_1)(x-e_2)(x-e_3)\]
덧셈공식
\(\wp(z+w)=-\wp(z)-\wp(w)+\frac{1}{4}(\frac{\wp'(z)-\wp'(w)}{\wp(z)-\wp(w)})^2\)
자코비 세타함수를 이용한 표현
역사
메모
- http://www.maths.gla.ac.uk/~mengland/Conferences/Burnhandout.pdf
- The zeros of theWeierstrass }–function and hypergeometric series W. Duke and O¨ . Imamog¯lu http://www.math.ucla.edu/~wdduke/preprints/zeros.pdf
- TeX symbol \wp, Unicode U+2118
관련된 항목들
매스매티카 파일 및 계산 리소스