"콕세터 군 H3"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
57번째 줄: 57번째 줄:
 
   & w & \ell(w) \\
 
   & w & \ell(w) \\
 
\hline
 
\hline
  1 & s() & 0 \\
+
  1 & \{\} & 0 \\
  2 & s(1) & 1 \\
+
  2 & \{1\} & 1 \\
  3 & s(2) & 1 \\
+
  3 & \{2\} & 1 \\
  4 & s(3) & 1 \\
+
  4 & \{3\} & 1 \\
  5 & s(2,1) & 2 \\
+
  5 & \{2,1\} & 2 \\
  6 & s(3,1) & 2 \\
+
  6 & \{3,1\} & 2 \\
  7 & s(1,2) & 2 \\
+
  7 & \{1,2\} & 2 \\
  8 & s(3,2) & 2 \\
+
  8 & \{3,2\} & 2 \\
  9 & s(2,3) & 2 \\
+
  9 & \{2,3\} & 2 \\
  10 & s(1,2,1) & 3 \\
+
  10 & \{1,2,1\} & 3 \\
  11 & s(3,2,1) & 3 \\
+
  11 & \{3,2,1\} & 3 \\
  12 & s(2,3,1) & 3 \\
+
  12 & \{2,3,1\} & 3 \\
  13 & s(2,1,2) & 3 \\
+
  13 & \{2,1,2\} & 3 \\
  14 & s(3,1,2) & 3 \\
+
  14 & \{3,1,2\} & 3 \\
  15 & s(2,3,2) & 3 \\
+
  15 & \{2,3,2\} & 3 \\
  16 & s(1,2,3) & 3 \\
+
  16 & \{1,2,3\} & 3 \\
  17 & s(2,1,2,1) & 4 \\
+
  17 & \{2,1,2,1\} & 4 \\
  18 & s(3,1,2,1) & 4 \\
+
  18 & \{3,1,2,1\} & 4 \\
  19 & s(2,3,2,1) & 4 \\
+
  19 & \{2,3,2,1\} & 4 \\
  20 & s(1,2,3,1) & 4 \\
+
  20 & \{1,2,3,1\} & 4 \\
  21 & s(1,2,1,2) & 4 \\
+
  21 & \{1,2,1,2\} & 4 \\
  22 & s(3,2,1,2) & 4 \\
+
  22 & \{3,2,1,2\} & 4 \\
  23 & s(2,3,1,2) & 4 \\
+
  23 & \{2,3,1,2\} & 4 \\
  24 & s(1,2,3,2) & 4 \\
+
  24 & \{1,2,3,2\} & 4 \\
  25 & s(2,1,2,3) & 4 \\
+
  25 & \{2,1,2,3\} & 4 \\
  26 & s(1,2,1,2,1) & 5 \\
+
  26 & \{1,2,1,2,1\} & 5 \\
  27 & s(3,2,1,2,1) & 5 \\
+
  27 & \{3,2,1,2,1\} & 5 \\
  28 & s(2,3,1,2,1) & 5 \\
+
  28 & \{2,3,1,2,1\} & 5 \\
  29 & s(1,2,3,2,1) & 5 \\
+
  29 & \{1,2,3,2,1\} & 5 \\
  30 & s(2,1,2,3,1) & 5 \\
+
  30 & \{2,1,2,3,1\} & 5 \\
  31 & s(3,1,2,1,2) & 5 \\
+
  31 & \{3,1,2,1,2\} & 5 \\
  32 & s(2,3,2,1,2) & 5 \\
+
  32 & \{2,3,2,1,2\} & 5 \\
  33 & s(1,2,3,1,2) & 5 \\
+
  33 & \{1,2,3,1,2\} & 5 \\
  34 & s(2,1,2,3,2) & 5 \\
+
  34 & \{2,1,2,3,2\} & 5 \\
  35 & s(1,2,1,2,3) & 5 \\
+
  35 & \{1,2,1,2,3\} & 5 \\
  36 & s(3,2,1,2,3) & 5 \\
+
  36 & \{3,2,1,2,3\} & 5 \\
  37 & s(3,1,2,1,2,1) & 6 \\
+
  37 & \{3,1,2,1,2,1\} & 6 \\
  38 & s(2,3,2,1,2,1) & 6 \\
+
  38 & \{2,3,2,1,2,1\} & 6 \\
  39 & s(1,2,3,1,2,1) & 6 \\
+
  39 & \{1,2,3,1,2,1\} & 6 \\
  40 & s(2,1,2,3,2,1) & 6 \\
+
  40 & \{2,1,2,3,2,1\} & 6 \\
  41 & s(1,2,1,2,3,1) & 6 \\
+
  41 & \{1,2,1,2,3,1\} & 6 \\
  42 & s(3,2,1,2,3,1) & 6 \\
+
  42 & \{3,2,1,2,3,1\} & 6 \\
  43 & s(2,3,1,2,1,2) & 6 \\
+
  43 & \{2,3,1,2,1,2\} & 6 \\
  44 & s(1,2,3,2,1,2) & 6 \\
+
  44 & \{1,2,3,2,1,2\} & 6 \\
  45 & s(2,1,2,3,1,2) & 6 \\
+
  45 & \{2,1,2,3,1,2\} & 6 \\
  46 & s(1,2,1,2,3,2) & 6 \\
+
  46 & \{1,2,1,2,3,2\} & 6 \\
  47 & s(3,2,1,2,3,2) & 6 \\
+
  47 & \{3,2,1,2,3,2\} & 6 \\
  48 & s(3,1,2,1,2,3) & 6 \\
+
  48 & \{3,1,2,1,2,3\} & 6 \\
  49 & s(2,3,1,2,1,2,1) & 7 \\
+
  49 & \{2,3,1,2,1,2,1\} & 7 \\
  50 & s(1,2,3,2,1,2,1) & 7 \\
+
  50 & \{1,2,3,2,1,2,1\} & 7 \\
  51 & s(2,1,2,3,1,2,1) & 7 \\
+
  51 & \{2,1,2,3,1,2,1\} & 7 \\
  52 & s(1,2,1,2,3,2,1) & 7 \\
+
  52 & \{1,2,1,2,3,2,1\} & 7 \\
  53 & s(3,2,1,2,3,2,1) & 7 \\
+
  53 & \{3,2,1,2,3,2,1\} & 7 \\
  54 & s(3,1,2,1,2,3,1) & 7 \\
+
  54 & \{3,1,2,1,2,3,1\} & 7 \\
  55 & s(1,2,3,1,2,1,2) & 7 \\
+
  55 & \{1,2,3,1,2,1,2\} & 7 \\
  56 & s(2,1,2,3,2,1,2) & 7 \\
+
  56 & \{2,1,2,3,2,1,2\} & 7 \\
  57 & s(1,2,1,2,3,1,2) & 7 \\
+
  57 & \{1,2,1,2,3,1,2\} & 7 \\
  58 & s(3,2,1,2,3,1,2) & 7 \\
+
  58 & \{3,2,1,2,3,1,2\} & 7 \\
  59 & s(3,1,2,1,2,3,2) & 7 \\
+
  59 & \{3,1,2,1,2,3,2\} & 7 \\
  60 & s(2,3,1,2,1,2,3) & 7 \\
+
  60 & \{2,3,1,2,1,2,3\} & 7 \\
  61 & s(1,2,3,1,2,1,2,1) & 8 \\
+
  61 & \{1,2,3,1,2,1,2,1\} & 8 \\
  62 & s(2,1,2,3,2,1,2,1) & 8 \\
+
  62 & \{2,1,2,3,2,1,2,1\} & 8 \\
  63 & s(1,2,1,2,3,1,2,1) & 8 \\
+
  63 & \{1,2,1,2,3,1,2,1\} & 8 \\
  64 & s(3,2,1,2,3,1,2,1) & 8 \\
+
  64 & \{3,2,1,2,3,1,2,1\} & 8 \\
  65 & s(3,1,2,1,2,3,2,1) & 8 \\
+
  65 & \{3,1,2,1,2,3,2,1\} & 8 \\
  66 & s(2,3,1,2,1,2,3,1) & 8 \\
+
  66 & \{2,3,1,2,1,2,3,1\} & 8 \\
  67 & s(2,1,2,3,1,2,1,2) & 8 \\
+
  67 & \{2,1,2,3,1,2,1,2\} & 8 \\
  68 & s(1,2,1,2,3,2,1,2) & 8 \\
+
  68 & \{1,2,1,2,3,2,1,2\} & 8 \\
  69 & s(3,2,1,2,3,2,1,2) & 8 \\
+
  69 & \{3,2,1,2,3,2,1,2\} & 8 \\
  70 & s(3,1,2,1,2,3,1,2) & 8 \\
+
  70 & \{3,1,2,1,2,3,1,2\} & 8 \\
  71 & s(2,3,1,2,1,2,3,2) & 8 \\
+
  71 & \{2,3,1,2,1,2,3,2\} & 8 \\
  72 & s(1,2,3,1,2,1,2,3) & 8 \\
+
  72 & \{1,2,3,1,2,1,2,3\} & 8 \\
  73 & s(2,1,2,3,1,2,1,2,1) & 9 \\
+
  73 & \{2,1,2,3,1,2,1,2,1\} & 9 \\
  74 & s(1,2,1,2,3,2,1,2,1) & 9 \\
+
  74 & \{1,2,1,2,3,2,1,2,1\} & 9 \\
  75 & s(3,2,1,2,3,2,1,2,1) & 9 \\
+
  75 & \{3,2,1,2,3,2,1,2,1\} & 9 \\
  76 & s(3,1,2,1,2,3,1,2,1) & 9 \\
+
  76 & \{3,1,2,1,2,3,1,2,1\} & 9 \\
  77 & s(2,3,1,2,1,2,3,2,1) & 9 \\
+
  77 & \{2,3,1,2,1,2,3,2,1\} & 9 \\
  78 & s(1,2,3,1,2,1,2,3,1) & 9 \\
+
  78 & \{1,2,3,1,2,1,2,3,1\} & 9 \\
  79 & s(1,2,1,2,3,1,2,1,2) & 9 \\
+
  79 & \{1,2,1,2,3,1,2,1,2\} & 9 \\
  80 & s(3,2,1,2,3,1,2,1,2) & 9 \\
+
  80 & \{3,2,1,2,3,1,2,1,2\} & 9 \\
  81 & s(3,1,2,1,2,3,2,1,2) & 9 \\
+
  81 & \{3,1,2,1,2,3,2,1,2\} & 9 \\
  82 & s(2,3,1,2,1,2,3,1,2) & 9 \\
+
  82 & \{2,3,1,2,1,2,3,1,2\} & 9 \\
  83 & s(1,2,3,1,2,1,2,3,2) & 9 \\
+
  83 & \{1,2,3,1,2,1,2,3,2\} & 9 \\
  84 & s(2,1,2,3,1,2,1,2,3) & 9 \\
+
  84 & \{2,1,2,3,1,2,1,2,3\} & 9 \\
  85 & s(1,2,1,2,3,1,2,1,2,1) & 10 \\
+
  85 & \{1,2,1,2,3,1,2,1,2,1\} & 10 \\
  86 & s(3,2,1,2,3,1,2,1,2,1) & 10 \\
+
  86 & \{3,2,1,2,3,1,2,1,2,1\} & 10 \\
  87 & s(3,1,2,1,2,3,2,1,2,1) & 10 \\
+
  87 & \{3,1,2,1,2,3,2,1,2,1\} & 10 \\
  88 & s(2,3,1,2,1,2,3,1,2,1) & 10 \\
+
  88 & \{2,3,1,2,1,2,3,1,2,1\} & 10 \\
  89 & s(1,2,3,1,2,1,2,3,2,1) & 10 \\
+
  89 & \{1,2,3,1,2,1,2,3,2,1\} & 10 \\
  90 & s(2,1,2,3,1,2,1,2,3,1) & 10 \\
+
  90 & \{2,1,2,3,1,2,1,2,3,1\} & 10 \\
  91 & s(3,1,2,1,2,3,1,2,1,2) & 10 \\
+
  91 & \{3,1,2,1,2,3,1,2,1,2\} & 10 \\
  92 & s(2,3,1,2,1,2,3,2,1,2) & 10 \\
+
  92 & \{2,3,1,2,1,2,3,2,1,2\} & 10 \\
  93 & s(1,2,3,1,2,1,2,3,1,2) & 10 \\
+
  93 & \{1,2,3,1,2,1,2,3,1,2\} & 10 \\
  94 & s(2,1,2,3,1,2,1,2,3,2) & 10 \\
+
  94 & \{2,1,2,3,1,2,1,2,3,2\} & 10 \\
  95 & s(3,2,1,2,3,1,2,1,2,3) & 10 \\
+
  95 & \{3,2,1,2,3,1,2,1,2,3\} & 10 \\
  96 & s(3,1,2,1,2,3,1,2,1,2,1) & 11 \\
+
  96 & \{3,1,2,1,2,3,1,2,1,2,1\} & 11 \\
  97 & s(2,3,1,2,1,2,3,2,1,2,1) & 11 \\
+
  97 & \{2,3,1,2,1,2,3,2,1,2,1\} & 11 \\
  98 & s(1,2,3,1,2,1,2,3,1,2,1) & 11 \\
+
  98 & \{1,2,3,1,2,1,2,3,1,2,1\} & 11 \\
  99 & s(2,1,2,3,1,2,1,2,3,2,1) & 11 \\
+
  99 & \{2,1,2,3,1,2,1,2,3,2,1\} & 11 \\
  100 & s(3,2,1,2,3,1,2,1,2,3,1) & 11 \\
+
  100 & \{3,2,1,2,3,1,2,1,2,3,1\} & 11 \\
  101 & s(2,3,1,2,1,2,3,1,2,1,2) & 11 \\
+
  101 & \{2,3,1,2,1,2,3,1,2,1,2\} & 11 \\
  102 & s(1,2,3,1,2,1,2,3,2,1,2) & 11 \\
+
  102 & \{1,2,3,1,2,1,2,3,2,1,2\} & 11 \\
  103 & s(2,1,2,3,1,2,1,2,3,1,2) & 11 \\
+
  103 & \{2,1,2,3,1,2,1,2,3,1,2\} & 11 \\
  104 & s(3,2,1,2,3,1,2,1,2,3,2) & 11 \\
+
  104 & \{3,2,1,2,3,1,2,1,2,3,2\} & 11 \\
  105 & s(2,3,1,2,1,2,3,1,2,1,2,1) & 12 \\
+
  105 & \{2,3,1,2,1,2,3,1,2,1,2,1\} & 12 \\
  106 & s(1,2,3,1,2,1,2,3,2,1,2,1) & 12 \\
+
  106 & \{1,2,3,1,2,1,2,3,2,1,2,1\} & 12 \\
  107 & s(2,1,2,3,1,2,1,2,3,1,2,1) & 12 \\
+
  107 & \{2,1,2,3,1,2,1,2,3,1,2,1\} & 12 \\
  108 & s(3,2,1,2,3,1,2,1,2,3,2,1) & 12 \\
+
  108 & \{3,2,1,2,3,1,2,1,2,3,2,1\} & 12 \\
  109 & s(1,2,3,1,2,1,2,3,1,2,1,2) & 12 \\
+
  109 & \{1,2,3,1,2,1,2,3,1,2,1,2\} & 12 \\
  110 & s(2,1,2,3,1,2,1,2,3,2,1,2) & 12 \\
+
  110 & \{2,1,2,3,1,2,1,2,3,2,1,2\} & 12 \\
  111 & s(3,2,1,2,3,1,2,1,2,3,1,2) & 12 \\
+
  111 & \{3,2,1,2,3,1,2,1,2,3,1,2\} & 12 \\
  112 & s(1,2,3,1,2,1,2,3,1,2,1,2,1) & 13 \\
+
  112 & \{1,2,3,1,2,1,2,3,1,2,1,2,1\} & 13 \\
  113 & s(2,1,2,3,1,2,1,2,3,2,1,2,1) & 13 \\
+
  113 & \{2,1,2,3,1,2,1,2,3,2,1,2,1\} & 13 \\
  114 & s(3,2,1,2,3,1,2,1,2,3,1,2,1) & 13 \\
+
  114 & \{3,2,1,2,3,1,2,1,2,3,1,2,1\} & 13 \\
  115 & s(2,1,2,3,1,2,1,2,3,1,2,1,2) & 13 \\
+
  115 & \{2,1,2,3,1,2,1,2,3,1,2,1,2\} & 13 \\
  116 & s(3,2,1,2,3,1,2,1,2,3,2,1,2) & 13 \\
+
  116 & \{3,2,1,2,3,1,2,1,2,3,2,1,2\} & 13 \\
  117 & s(2,1,2,3,1,2,1,2,3,1,2,1,2,1) & 14 \\
+
  117 & \{2,1,2,3,1,2,1,2,3,1,2,1,2,1\} & 14 \\
  118 & s(3,2,1,2,3,1,2,1,2,3,2,1,2,1) & 14 \\
+
  118 & \{3,2,1,2,3,1,2,1,2,3,2,1,2,1\} & 14 \\
  119 & s(3,2,1,2,3,1,2,1,2,3,1,2,1,2) & 14 \\
+
  119 & \{3,2,1,2,3,1,2,1,2,3,1,2,1,2\} & 14 \\
  120 & s(3,2,1,2,3,1,2,1,2,3,1,2,1,2,1) & 15
+
  120 & \{3,2,1,2,3,1,2,1,2,3,1,2,1,2,1\} & 15
 
\end{array}
 
\end{array}
 
$$
 
$$

2014년 6월 30일 (월) 07:06 판

개요

  • 다음과 같이 정의되는 콕세터 군 $H_3$

$$ \left\langle r_1,r_2,r_3 \mid r_i^2=(r_3r_1)^2=(r_1r_2)^3=(r_2r_3)^5=1\right\rangle $$

  • 불변량

$$ \begin{array}{c|ccccc} & \text{rank} & \text{degree} & \text{exponent} & \text{order} & \text{Coxeter} \\ \hline H_3 & 3 & 2,6,10 & 1,5,9 & 120 & 10 \end{array} $$


푸앵카레 다항식

  • $H_3$의 푸앵카레 다항식은 다음과 같다

$$ \begin{aligned} P_{W}(q)&=\sum_{w\in W}q^{\ell(w)} \\ &=1+3 q+5 q^2+7 q^3+9 q^4+11 q^5+12 q^6+12 q^7+12 q^8+12 q^9+11 q^{10}+9 q^{11}+7 q^{12}+5 q^{13}+3 q^{14}+q^{15} \end{aligned} $$


콕세터 원소

  • 콕세터 다항식, 즉 콕세터 원소의 특성다항식은 다음과 같다

$$ -(x+1) \left(x^2- \varphi x +1\right) $$ 여기서 $\varphi=\frac{1+\sqrt{5}}{2}$

  • 콕세터 다항식의 세 해는 $\zeta, \zeta^5,\zeta^9$로 주어지며 여기서 $\zeta=e^{2\pi i/10}$


루트 시스템

  • 30개의 원소로 구성
  • 다음과 같은 세 벡터가 simple system을 이룬다

$$ \begin{align} r_1= \beta(1+2 \alpha,1 , -2 \alpha) \\ r_2= \beta(-1-2 \alpha , 1 , 2 \alpha) \\ r_3= \beta(2 \alpha , -1-2 \alpha , 1) \end{align} $$ 여기서 $\alpha=\cos \pi/5, \beta=\cos 2\pi/5$

콕세터 군 H32.png

콕세터 평면으로의 사영

콕세터 군 H31.png


테이블

  • 원소

$$ \begin{array}{ccc} & w & \ell(w) \\ \hline 1 & \{\} & 0 \\ 2 & \{1\} & 1 \\ 3 & \{2\} & 1 \\ 4 & \{3\} & 1 \\ 5 & \{2,1\} & 2 \\ 6 & \{3,1\} & 2 \\ 7 & \{1,2\} & 2 \\ 8 & \{3,2\} & 2 \\ 9 & \{2,3\} & 2 \\ 10 & \{1,2,1\} & 3 \\ 11 & \{3,2,1\} & 3 \\ 12 & \{2,3,1\} & 3 \\ 13 & \{2,1,2\} & 3 \\ 14 & \{3,1,2\} & 3 \\ 15 & \{2,3,2\} & 3 \\ 16 & \{1,2,3\} & 3 \\ 17 & \{2,1,2,1\} & 4 \\ 18 & \{3,1,2,1\} & 4 \\ 19 & \{2,3,2,1\} & 4 \\ 20 & \{1,2,3,1\} & 4 \\ 21 & \{1,2,1,2\} & 4 \\ 22 & \{3,2,1,2\} & 4 \\ 23 & \{2,3,1,2\} & 4 \\ 24 & \{1,2,3,2\} & 4 \\ 25 & \{2,1,2,3\} & 4 \\ 26 & \{1,2,1,2,1\} & 5 \\ 27 & \{3,2,1,2,1\} & 5 \\ 28 & \{2,3,1,2,1\} & 5 \\ 29 & \{1,2,3,2,1\} & 5 \\ 30 & \{2,1,2,3,1\} & 5 \\ 31 & \{3,1,2,1,2\} & 5 \\ 32 & \{2,3,2,1,2\} & 5 \\ 33 & \{1,2,3,1,2\} & 5 \\ 34 & \{2,1,2,3,2\} & 5 \\ 35 & \{1,2,1,2,3\} & 5 \\ 36 & \{3,2,1,2,3\} & 5 \\ 37 & \{3,1,2,1,2,1\} & 6 \\ 38 & \{2,3,2,1,2,1\} & 6 \\ 39 & \{1,2,3,1,2,1\} & 6 \\ 40 & \{2,1,2,3,2,1\} & 6 \\ 41 & \{1,2,1,2,3,1\} & 6 \\ 42 & \{3,2,1,2,3,1\} & 6 \\ 43 & \{2,3,1,2,1,2\} & 6 \\ 44 & \{1,2,3,2,1,2\} & 6 \\ 45 & \{2,1,2,3,1,2\} & 6 \\ 46 & \{1,2,1,2,3,2\} & 6 \\ 47 & \{3,2,1,2,3,2\} & 6 \\ 48 & \{3,1,2,1,2,3\} & 6 \\ 49 & \{2,3,1,2,1,2,1\} & 7 \\ 50 & \{1,2,3,2,1,2,1\} & 7 \\ 51 & \{2,1,2,3,1,2,1\} & 7 \\ 52 & \{1,2,1,2,3,2,1\} & 7 \\ 53 & \{3,2,1,2,3,2,1\} & 7 \\ 54 & \{3,1,2,1,2,3,1\} & 7 \\ 55 & \{1,2,3,1,2,1,2\} & 7 \\ 56 & \{2,1,2,3,2,1,2\} & 7 \\ 57 & \{1,2,1,2,3,1,2\} & 7 \\ 58 & \{3,2,1,2,3,1,2\} & 7 \\ 59 & \{3,1,2,1,2,3,2\} & 7 \\ 60 & \{2,3,1,2,1,2,3\} & 7 \\ 61 & \{1,2,3,1,2,1,2,1\} & 8 \\ 62 & \{2,1,2,3,2,1,2,1\} & 8 \\ 63 & \{1,2,1,2,3,1,2,1\} & 8 \\ 64 & \{3,2,1,2,3,1,2,1\} & 8 \\ 65 & \{3,1,2,1,2,3,2,1\} & 8 \\ 66 & \{2,3,1,2,1,2,3,1\} & 8 \\ 67 & \{2,1,2,3,1,2,1,2\} & 8 \\ 68 & \{1,2,1,2,3,2,1,2\} & 8 \\ 69 & \{3,2,1,2,3,2,1,2\} & 8 \\ 70 & \{3,1,2,1,2,3,1,2\} & 8 \\ 71 & \{2,3,1,2,1,2,3,2\} & 8 \\ 72 & \{1,2,3,1,2,1,2,3\} & 8 \\ 73 & \{2,1,2,3,1,2,1,2,1\} & 9 \\ 74 & \{1,2,1,2,3,2,1,2,1\} & 9 \\ 75 & \{3,2,1,2,3,2,1,2,1\} & 9 \\ 76 & \{3,1,2,1,2,3,1,2,1\} & 9 \\ 77 & \{2,3,1,2,1,2,3,2,1\} & 9 \\ 78 & \{1,2,3,1,2,1,2,3,1\} & 9 \\ 79 & \{1,2,1,2,3,1,2,1,2\} & 9 \\ 80 & \{3,2,1,2,3,1,2,1,2\} & 9 \\ 81 & \{3,1,2,1,2,3,2,1,2\} & 9 \\ 82 & \{2,3,1,2,1,2,3,1,2\} & 9 \\ 83 & \{1,2,3,1,2,1,2,3,2\} & 9 \\ 84 & \{2,1,2,3,1,2,1,2,3\} & 9 \\ 85 & \{1,2,1,2,3,1,2,1,2,1\} & 10 \\ 86 & \{3,2,1,2,3,1,2,1,2,1\} & 10 \\ 87 & \{3,1,2,1,2,3,2,1,2,1\} & 10 \\ 88 & \{2,3,1,2,1,2,3,1,2,1\} & 10 \\ 89 & \{1,2,3,1,2,1,2,3,2,1\} & 10 \\ 90 & \{2,1,2,3,1,2,1,2,3,1\} & 10 \\ 91 & \{3,1,2,1,2,3,1,2,1,2\} & 10 \\ 92 & \{2,3,1,2,1,2,3,2,1,2\} & 10 \\ 93 & \{1,2,3,1,2,1,2,3,1,2\} & 10 \\ 94 & \{2,1,2,3,1,2,1,2,3,2\} & 10 \\ 95 & \{3,2,1,2,3,1,2,1,2,3\} & 10 \\ 96 & \{3,1,2,1,2,3,1,2,1,2,1\} & 11 \\ 97 & \{2,3,1,2,1,2,3,2,1,2,1\} & 11 \\ 98 & \{1,2,3,1,2,1,2,3,1,2,1\} & 11 \\ 99 & \{2,1,2,3,1,2,1,2,3,2,1\} & 11 \\ 100 & \{3,2,1,2,3,1,2,1,2,3,1\} & 11 \\ 101 & \{2,3,1,2,1,2,3,1,2,1,2\} & 11 \\ 102 & \{1,2,3,1,2,1,2,3,2,1,2\} & 11 \\ 103 & \{2,1,2,3,1,2,1,2,3,1,2\} & 11 \\ 104 & \{3,2,1,2,3,1,2,1,2,3,2\} & 11 \\ 105 & \{2,3,1,2,1,2,3,1,2,1,2,1\} & 12 \\ 106 & \{1,2,3,1,2,1,2,3,2,1,2,1\} & 12 \\ 107 & \{2,1,2,3,1,2,1,2,3,1,2,1\} & 12 \\ 108 & \{3,2,1,2,3,1,2,1,2,3,2,1\} & 12 \\ 109 & \{1,2,3,1,2,1,2,3,1,2,1,2\} & 12 \\ 110 & \{2,1,2,3,1,2,1,2,3,2,1,2\} & 12 \\ 111 & \{3,2,1,2,3,1,2,1,2,3,1,2\} & 12 \\ 112 & \{1,2,3,1,2,1,2,3,1,2,1,2,1\} & 13 \\ 113 & \{2,1,2,3,1,2,1,2,3,2,1,2,1\} & 13 \\ 114 & \{3,2,1,2,3,1,2,1,2,3,1,2,1\} & 13 \\ 115 & \{2,1,2,3,1,2,1,2,3,1,2,1,2\} & 13 \\ 116 & \{3,2,1,2,3,1,2,1,2,3,2,1,2\} & 13 \\ 117 & \{2,1,2,3,1,2,1,2,3,1,2,1,2,1\} & 14 \\ 118 & \{3,2,1,2,3,1,2,1,2,3,2,1,2,1\} & 14 \\ 119 & \{3,2,1,2,3,1,2,1,2,3,1,2,1,2\} & 14 \\ 120 & \{3,2,1,2,3,1,2,1,2,3,1,2,1,2,1\} & 15 \end{array} $$

재미있는 사실

  • 2011년 9월 미국수학회보(Notices of the American Mathematical Society)의 표지에 콕세터 평면으로의 사영이 등장, 링크


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료