"Compact Kähler manifolds"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==cohomology theory== * compact Kähler manifold of dimension n * Dolbeault cohomology * $h^{p,q}=\operatorname{dim} H^{p,q}(X)$ * $h^{p,q}=h^{q,p}$ * Serre duality $h^{p,q}=h^{n-p,n-q}$)
 
imported>Pythagoras0
5번째 줄: 5번째 줄:
 
* $h^{p,q}=h^{q,p}$
 
* $h^{p,q}=h^{q,p}$
 
* Serre duality $h^{p,q}=h^{n-p,n-q}$
 
* Serre duality $h^{p,q}=h^{n-p,n-q}$
 +
 +
 +
==Hodge decomposition theorem==
 +
* Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition
 +
$$
 +
H^{m}_{dR}(M;\mathbb{C})=\oplus_{p+q=m}H^{p,q}(M)
 +
$$
 +
Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$.

2012년 12월 4일 (화) 15:46 판

cohomology theory

  • compact Kähler manifold of dimension n
  • Dolbeault cohomology
  • $h^{p,q}=\operatorname{dim} H^{p,q}(X)$
  • $h^{p,q}=h^{q,p}$
  • Serre duality $h^{p,q}=h^{n-p,n-q}$


Hodge decomposition theorem

  • Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition

$$ H^{m}_{dR}(M;\mathbb{C})=\oplus_{p+q=m}H^{p,q}(M) $$ Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$.