"Compact Kähler manifolds"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
4번째 줄: 4번째 줄:
 
* The Ricci form is one of the most important objects on a Kahler manifold
 
* The Ricci form is one of the most important objects on a Kahler manifold
  
 +
 +
==Hermitian metric on a complex manifold==
 +
* Let $h$ be a Hermitian metric and the coefficient
 +
$$
 +
h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}})
 +
$$
  
 
==dimension 1 case==
 
==dimension 1 case==

2013년 6월 3일 (월) 22:56 판

introduction

  • Hermitian complex manifold $M$ equipped with a closed Kähler from $\omega$, i.e., $d\omega=0$
  • $\omega=-2ih_{\alpha\overline{\beta}}dz^{\alpha}dz^{\overline{\beta}}$
  • The Ricci form is one of the most important objects on a Kahler manifold


Hermitian metric on a complex manifold

  • Let $h$ be a Hermitian metric and the coefficient

$$ h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}) $$

dimension 1 case

  • $h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h$
  • $\omega=-2ih\,dz d\overline{z}$
  • for $\mathbb{P}^{1}$,

$$ \omega=\frac{-i}{2\pi}\frac{dz d\bar{z}}{(1+|z|^2)^2} $$ see Chern class


examples


cohomology theory

  • compact Kähler manifold of dimension n
  • Dolbeault cohomology
  • $h^{p,q}=\operatorname{dim} H^{p,q}(X)$
  • $h^{p,q}=h^{q,p}$
  • Serre duality $h^{p,q}=h^{n-p,n-q}$


Hodge decomposition theorem

  • Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition

$$ H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M) $$ Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$.