"Compact Kähler manifolds"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | * Hermitian complex manifold $M$ | + | * A Hermitian metric $h$ on a complex manifold $(M^{2m},J)$ : $h(X,Y)=h(JX,JY)$ |
− | * $\ | + | * fundamental 2-form (or Kähler form) $(1,1)$-form given by $\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}$ |
+ | * If $\Omega$ is closed, i.e., $d\Omega=0$, we call $h$ Kahler | ||
+ | * there exists a real function $u$ such that $\Omega=i\partial \overline{\partial} u$, which we call the Kahler potential | ||
* The Ricci form is one of the most important objects on a Kahler manifold | * The Ricci form is one of the most important objects on a Kahler manifold | ||
10번째 줄: | 12번째 줄: | ||
h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}) | h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}) | ||
$$ | $$ | ||
+ | |||
==dimension 1 case== | ==dimension 1 case== | ||
16번째 줄: | 19번째 줄: | ||
* for $\mathbb{P}^{1}$, | * for $\mathbb{P}^{1}$, | ||
$$ | $$ | ||
− | \omega=\frac{-i}{2\pi}\frac{dz d\bar{z}}{(1+|z|^2)^2} | + | \omega=\frac{-i}{2\pi}\frac{dz \wedge d\bar{z}}{(1+|z|^2)^2} |
$$ | $$ | ||
see [[Chern class]] | see [[Chern class]] |
2013년 6월 3일 (월) 23:06 판
introduction
- A Hermitian metric $h$ on a complex manifold $(M^{2m},J)$ : $h(X,Y)=h(JX,JY)$
- fundamental 2-form (or Kähler form) $(1,1)$-form given by $\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}$
- If $\Omega$ is closed, i.e., $d\Omega=0$, we call $h$ Kahler
- there exists a real function $u$ such that $\Omega=i\partial \overline{\partial} u$, which we call the Kahler potential
- The Ricci form is one of the most important objects on a Kahler manifold
Hermitian metric on a complex manifold
- Let $h$ be a Hermitian metric and the coefficient
$$ h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}) $$
dimension 1 case
- $h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h$
- $\omega=-2ih\,dz d\overline{z}$
- for $\mathbb{P}^{1}$,
$$ \omega=\frac{-i}{2\pi}\frac{dz \wedge d\bar{z}}{(1+|z|^2)^2} $$ see Chern class
examples
cohomology theory
- compact Kähler manifold of dimension n
- Dolbeault cohomology
- $h^{p,q}=\operatorname{dim} H^{p,q}(X)$
- $h^{p,q}=h^{q,p}$
- Serre duality $h^{p,q}=h^{n-p,n-q}$
Hodge decomposition theorem
- Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition
$$ H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M) $$ Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$.