"Compact Kähler manifolds"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
3번째 줄: 3번째 줄:
 
* fundamental 2-form (or Kähler form) $(1,1)$-form given by $\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}$
 
* fundamental 2-form (or Kähler form) $(1,1)$-form given by $\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}$
 
* If $\Omega$ is closed, i.e., $d\Omega=0$, we call $h$ a Kahler metric
 
* If $\Omega$ is closed, i.e., $d\Omega=0$, we call $h$ a Kahler metric
* there exists a real function $u$ such that $\Omega=i\partial \overline{\partial} u$, which we call the Kahler potential
+
* there exists a real function $K$ such that $\Omega=i\partial \overline{\partial} K$, which we call the Kahler potential
 
* The Ricci form is one of the most important objects on a Kahler manifold
 
* The Ricci form is one of the most important objects on a Kahler manifold
  
33번째 줄: 33번째 줄:
 
* [[K3 surfaces]]
 
* [[K3 surfaces]]
 
* [[Calabi-Yau manifold]]
 
* [[Calabi-Yau manifold]]
 +
  
 
==cohomology theory==
 
==cohomology theory==
51번째 줄: 52번째 줄:
  
 
==expositions==
 
==expositions==
* http://www.staff.science.uu.nl/~vando101/MRIlectures.pdf
+
* Stefan Vandoren [http://www.staff.science.uu.nl/~vando101/MRIlectures.pdf Lectures on Riemannian Geometry, Part II:Complex Manifolds]
 
* [http://www.math.upenn.edu/~siegelch/Notes/Cattani1.pdf Complex manifolds, Kahler metrics, differential and harmonic forms]
 
* [http://www.math.upenn.edu/~siegelch/Notes/Cattani1.pdf Complex manifolds, Kahler metrics, differential and harmonic forms]
 
* Werner Ballmann [http://people.mpim-bonn.mpg.de/hwbllmnn/archiv/kaehler0609.pdf‎ Lectures on Kahler Manifolds]
 
* Werner Ballmann [http://people.mpim-bonn.mpg.de/hwbllmnn/archiv/kaehler0609.pdf‎ Lectures on Kahler Manifolds]

2013년 6월 4일 (화) 10:44 판

introduction

  • A Hermitian metric $h$ on a complex manifold $(M^{2m},J)$ : $h(X,Y)=h(JX,JY)$
  • fundamental 2-form (or Kähler form) $(1,1)$-form given by $\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}$
  • If $\Omega$ is closed, i.e., $d\Omega=0$, we call $h$ a Kahler metric
  • there exists a real function $K$ such that $\Omega=i\partial \overline{\partial} K$, which we call the Kahler potential
  • The Ricci form is one of the most important objects on a Kahler manifold


Hermitian metric on a complex manifold

  • Let $h$ be a Hermitian metric and the coefficient

$$ h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}) $$


examples

flat matric

  • $h_{\alpha\overline{\beta}}=\frac{1}{2}\delta_{\alpha\beta}$
  • $\Omega=\frac{i}{2}\sum_{\alpha=1}^m dz_{\alpha}\wedge d\bar{z}_{\alpha}$
  • potential $u(z)=\frac{1}{2}|z|^2$

dimension 1 case

  • $h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h$
  • $\Omega=-2ih\,dz \wedge d\overline{z}$
  • for $\mathbb{P}^{1}$,

$$ \Omega=\frac{-i}{2\pi}\frac{dz \wedge d\bar{z}}{(1+|z|^2)^2} $$ see Chern class

etc


cohomology theory

  • compact Kähler manifold of dimension n
  • Dolbeault cohomology
  • $h^{p,q}=\operatorname{dim} H^{p,q}(X)$
  • $h^{p,q}=h^{q,p}$
  • Serre duality $h^{p,q}=h^{n-p,n-q}$


Hodge decomposition theorem

  • Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition

$$ H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M) $$ Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$.


expositions