"Compact Kähler manifolds"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * {{수학노트|url=Metrics_on_Riemann_surfaces}} | ||
+ | * Kahler geometry = intersection of Riemmanian, Complex, symplectic geometry | ||
+ | * A Hermitian metric $h$ on a complex manifold $(M^{2m},J)$ : $h(X,Y)=h(JX,JY)$ | ||
+ | * fundamental 2-form (or Kähler form) $(1,1)$-form given by $\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}$ | ||
+ | * If $\Omega$ is closed, i.e., $d\Omega=0$, we call $h$ a Kahler metric | ||
+ | * there exists a real function $K$ such that $\Omega=i\partial \overline{\partial} K$, which we call the Kahler potential | ||
+ | * The Ricci form is one of the most important objects on a Kahler manifold | ||
+ | ==Hermitian metric on a complex manifold== | ||
+ | * Let $h$ be a Hermitian metric and the coefficient | ||
+ | $$ | ||
+ | h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}) | ||
+ | $$ | ||
+ | |||
+ | |||
+ | ==examples== | ||
+ | ====flat matric==== | ||
+ | * $h_{\alpha\overline{\beta}}=\frac{1}{2}\delta_{\alpha\beta}$ | ||
+ | * $\Omega=\frac{i}{2}\sum_{\alpha=1}^m dz_{\alpha}\wedge d\bar{z}_{\alpha}$ | ||
+ | * potential $u(z)=\frac{1}{2}|z|^2$ | ||
+ | |||
+ | ====dimension 1 case==== | ||
+ | * $h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h$ | ||
+ | * $\Omega=-2ih\,dz \wedge d\overline{z}$ | ||
+ | * for $\mathbb{P}^{1}$, | ||
+ | $$ | ||
+ | \Omega=\frac{-i}{2\pi}\frac{dz \wedge d\bar{z}}{(1+|z|^2)^2} | ||
+ | $$ | ||
+ | see [[Chern class]] | ||
+ | |||
+ | ====etc==== | ||
+ | * [[Fubini–Study metric]] | ||
+ | * [[K3 surfaces]] | ||
+ | * [[Calabi-Yau manifold]] | ||
+ | * [[Hyperkahler manifolds]] | ||
+ | |||
+ | |||
+ | ==cohomology theory== | ||
+ | * [[Hodge theory of harmonic forms]] | ||
+ | * compact Kähler manifold of dimension n | ||
+ | * Dolbeault cohomology | ||
+ | * $h^{p,q}=\operatorname{dim} H^{p,q}(X)$ | ||
+ | * $h^{p,q}=h^{q,p}$ | ||
+ | * Serre duality $h^{p,q}=h^{n-p,n-q}$ | ||
+ | |||
+ | |||
+ | ===Hodge decomposition theorem=== | ||
+ | * Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition | ||
+ | $$ | ||
+ | H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M) | ||
+ | $$ | ||
+ | Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$. | ||
+ | |||
+ | |||
+ | ===Delbeault=== | ||
+ | * cohomology of sheaves of holomorphic forms | ||
+ | ;theorem | ||
+ | Let $\Omega$ be the space of holomorphic $p$-forms on $M$ | ||
+ | $$ | ||
+ | H^{p,q}(M)\cong H^q(M,\Omega^p) | ||
+ | $$ | ||
+ | |||
+ | |||
+ | ==computational resource== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxLXgxazdpTXRDR0E/edit | ||
+ | |||
+ | |||
+ | ==expositions== | ||
+ | * Valentino Tosatti, KAWA lecture notes on the Kähler-Ricci flow, arXiv:1508.04823 [math.DG], August 19 2015, http://arxiv.org/abs/1508.04823 | ||
+ | * Tosatti, Valentino. “Uniqueness of CP^n.” arXiv:1508.05641 [math], August 23, 2015. http://arxiv.org/abs/1508.05641. | ||
+ | * Weinkove, Ben. ‘The K"ahler-Ricci Flow on Compact K"ahler Manifolds’. arXiv:1502.06855 [math], 24 February 2015. http://arxiv.org/abs/1502.06855. | ||
+ | * Stefan Vandoren [http://www.staff.science.uu.nl/~vando101/MRIlectures.pdf Lectures on Riemannian Geometry, Part II:Complex Manifolds] | ||
+ | * [http://www.math.upenn.edu/~siegelch/Notes/Cattani1.pdf Complex manifolds, Kahler metrics, differential and harmonic forms] | ||
+ | * Werner Ballmann [http://people.mpim-bonn.mpg.de/hwbllmnn/archiv/kaehler0609.pdf Lectures on Kahler Manifolds] | ||
+ | |||
+ | ==articles== | ||
+ | * Berczi, Gergely. “Towards the Green-Griffiths-Lang Conjecture via Equivariant Localisation.” arXiv:1509.03406 [math], September 11, 2015. http://arxiv.org/abs/1509.03406. | ||
+ | * Treger, Robert. ‘On Uniformization of Compact Kahler Manifolds’. arXiv:1507.01379 [math], 6 July 2015. http://arxiv.org/abs/1507.01379. | ||
+ | * Dinh, Tien-Cuong, Fei Hu, and De-Qi Zhang. ‘Compact K"ahler Manifolds Admitting Large Solvable Groups of Automorphisms’. arXiv:1502.07060 [math], 25 February 2015. http://arxiv.org/abs/1502.07060. | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 09:29 판
introduction
- 틀:수학노트
- Kahler geometry = intersection of Riemmanian, Complex, symplectic geometry
- A Hermitian metric $h$ on a complex manifold $(M^{2m},J)$ : $h(X,Y)=h(JX,JY)$
- fundamental 2-form (or Kähler form) $(1,1)$-form given by $\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}$
- If $\Omega$ is closed, i.e., $d\Omega=0$, we call $h$ a Kahler metric
- there exists a real function $K$ such that $\Omega=i\partial \overline{\partial} K$, which we call the Kahler potential
- The Ricci form is one of the most important objects on a Kahler manifold
Hermitian metric on a complex manifold
- Let $h$ be a Hermitian metric and the coefficient
$$ h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}) $$
examples
flat matric
- $h_{\alpha\overline{\beta}}=\frac{1}{2}\delta_{\alpha\beta}$
- $\Omega=\frac{i}{2}\sum_{\alpha=1}^m dz_{\alpha}\wedge d\bar{z}_{\alpha}$
- potential $u(z)=\frac{1}{2}|z|^2$
dimension 1 case
- $h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h$
- $\Omega=-2ih\,dz \wedge d\overline{z}$
- for $\mathbb{P}^{1}$,
$$ \Omega=\frac{-i}{2\pi}\frac{dz \wedge d\bar{z}}{(1+|z|^2)^2} $$ see Chern class
etc
cohomology theory
- Hodge theory of harmonic forms
- compact Kähler manifold of dimension n
- Dolbeault cohomology
- $h^{p,q}=\operatorname{dim} H^{p,q}(X)$
- $h^{p,q}=h^{q,p}$
- Serre duality $h^{p,q}=h^{n-p,n-q}$
Hodge decomposition theorem
- Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition
$$ H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M) $$ Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$.
Delbeault
- cohomology of sheaves of holomorphic forms
- theorem
Let $\Omega$ be the space of holomorphic $p$-forms on $M$ $$ H^{p,q}(M)\cong H^q(M,\Omega^p) $$
computational resource
expositions
- Valentino Tosatti, KAWA lecture notes on the Kähler-Ricci flow, arXiv:1508.04823 [math.DG], August 19 2015, http://arxiv.org/abs/1508.04823
- Tosatti, Valentino. “Uniqueness of CP^n.” arXiv:1508.05641 [math], August 23, 2015. http://arxiv.org/abs/1508.05641.
- Weinkove, Ben. ‘The K"ahler-Ricci Flow on Compact K"ahler Manifolds’. arXiv:1502.06855 [math], 24 February 2015. http://arxiv.org/abs/1502.06855.
- Stefan Vandoren Lectures on Riemannian Geometry, Part II:Complex Manifolds
- Complex manifolds, Kahler metrics, differential and harmonic forms
- Werner Ballmann Lectures on Kahler Manifolds
articles
- Berczi, Gergely. “Towards the Green-Griffiths-Lang Conjecture via Equivariant Localisation.” arXiv:1509.03406 [math], September 11, 2015. http://arxiv.org/abs/1509.03406.
- Treger, Robert. ‘On Uniformization of Compact Kahler Manifolds’. arXiv:1507.01379 [math], 6 July 2015. http://arxiv.org/abs/1507.01379.
- Dinh, Tien-Cuong, Fei Hu, and De-Qi Zhang. ‘Compact K"ahler Manifolds Admitting Large Solvable Groups of Automorphisms’. arXiv:1502.07060 [math], 25 February 2015. http://arxiv.org/abs/1502.07060.