"Compact Kähler manifolds"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* {{수학노트|url=Metrics_on_Riemann_surfaces}}
 +
* Kahler geometry = intersection of Riemmanian, Complex, symplectic geometry
 +
* A Hermitian metric $h$ on a complex manifold $(M^{2m},J)$ : $h(X,Y)=h(JX,JY)$
 +
* fundamental 2-form (or Kähler form) $(1,1)$-form given by $\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}$
 +
* If $\Omega$ is closed, i.e., $d\Omega=0$, we call $h$ a Kahler metric
 +
* there exists a real function $K$ such that $\Omega=i\partial \overline{\partial} K$, which we call the Kahler potential
 +
* The Ricci form is one of the most important objects on a Kahler manifold
  
 +
==Hermitian metric on a complex manifold==
 +
* Let $h$ be a Hermitian metric and the coefficient
 +
$$
 +
h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}})
 +
$$
 +
 +
 +
==examples==
 +
====flat matric====
 +
* $h_{\alpha\overline{\beta}}=\frac{1}{2}\delta_{\alpha\beta}$
 +
* $\Omega=\frac{i}{2}\sum_{\alpha=1}^m dz_{\alpha}\wedge d\bar{z}_{\alpha}$
 +
* potential $u(z)=\frac{1}{2}|z|^2$
 +
 +
====dimension 1 case====
 +
* $h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h$
 +
* $\Omega=-2ih\,dz \wedge d\overline{z}$
 +
* for $\mathbb{P}^{1}$,
 +
$$
 +
\Omega=\frac{-i}{2\pi}\frac{dz \wedge d\bar{z}}{(1+|z|^2)^2}
 +
$$
 +
see [[Chern class]]
 +
 +
====etc====
 +
* [[Fubini–Study metric]]
 +
* [[K3 surfaces]]
 +
* [[Calabi-Yau manifold]]
 +
* [[Hyperkahler manifolds]]
 +
 +
 +
==cohomology theory==
 +
* [[Hodge theory of harmonic forms]]
 +
* compact Kähler manifold of dimension n
 +
* Dolbeault cohomology
 +
* $h^{p,q}=\operatorname{dim} H^{p,q}(X)$
 +
* $h^{p,q}=h^{q,p}$
 +
* Serre duality $h^{p,q}=h^{n-p,n-q}$
 +
 +
 +
===Hodge decomposition theorem===
 +
* Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition
 +
$$
 +
H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M)
 +
$$
 +
Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$.
 +
 +
 +
===Delbeault===
 +
* cohomology of sheaves of holomorphic forms
 +
;theorem
 +
Let $\Omega$ be the space of holomorphic $p$-forms on $M$
 +
$$
 +
H^{p,q}(M)\cong H^q(M,\Omega^p)
 +
$$
 +
 +
 +
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxLXgxazdpTXRDR0E/edit
 +
 +
 +
==expositions==
 +
* Valentino Tosatti, KAWA lecture notes on the Kähler-Ricci flow, arXiv:1508.04823 [math.DG], August 19 2015, http://arxiv.org/abs/1508.04823
 +
* Tosatti, Valentino. “Uniqueness of CP^n.” arXiv:1508.05641 [math], August 23, 2015. http://arxiv.org/abs/1508.05641.
 +
* Weinkove, Ben. ‘The K"ahler-Ricci Flow on Compact K"ahler Manifolds’. arXiv:1502.06855 [math], 24 February 2015. http://arxiv.org/abs/1502.06855.
 +
* Stefan Vandoren [http://www.staff.science.uu.nl/~vando101/MRIlectures.pdf Lectures on Riemannian Geometry, Part II:Complex Manifolds]
 +
* [http://www.math.upenn.edu/~siegelch/Notes/Cattani1.pdf Complex manifolds, Kahler metrics, differential and harmonic forms]
 +
* Werner Ballmann [http://people.mpim-bonn.mpg.de/hwbllmnn/archiv/kaehler0609.pdf‎ Lectures on Kahler Manifolds]
 +
 +
==articles==
 +
* Berczi, Gergely. “Towards the Green-Griffiths-Lang Conjecture via Equivariant Localisation.” arXiv:1509.03406 [math], September 11, 2015. http://arxiv.org/abs/1509.03406.
 +
* Treger, Robert. ‘On Uniformization of Compact Kahler Manifolds’. arXiv:1507.01379 [math], 6 July 2015. http://arxiv.org/abs/1507.01379.
 +
* Dinh, Tien-Cuong, Fei Hu, and De-Qi Zhang. ‘Compact K"ahler Manifolds Admitting Large Solvable Groups of Automorphisms’. arXiv:1502.07060 [math], 25 February 2015. http://arxiv.org/abs/1502.07060.
 +
[[분류:migrate]]

2020년 11월 13일 (금) 09:29 판

introduction

  • 틀:수학노트
  • Kahler geometry = intersection of Riemmanian, Complex, symplectic geometry
  • A Hermitian metric $h$ on a complex manifold $(M^{2m},J)$ : $h(X,Y)=h(JX,JY)$
  • fundamental 2-form (or Kähler form) $(1,1)$-form given by $\Omega=i\sum_{\alpha,\beta=1}^{m}h_{\alpha\overline{\beta}}dz^{\alpha}\wedge dz^{\overline{\beta}}$
  • If $\Omega$ is closed, i.e., $d\Omega=0$, we call $h$ a Kahler metric
  • there exists a real function $K$ such that $\Omega=i\partial \overline{\partial} K$, which we call the Kahler potential
  • The Ricci form is one of the most important objects on a Kahler manifold

Hermitian metric on a complex manifold

  • Let $h$ be a Hermitian metric and the coefficient

$$ h_{\alpha\overline{\beta}}:=h(\frac{\partial}{\partial z_{\alpha}},\frac{\partial}{\partial \overline{z}_{\beta}}) $$


examples

flat matric

  • $h_{\alpha\overline{\beta}}=\frac{1}{2}\delta_{\alpha\beta}$
  • $\Omega=\frac{i}{2}\sum_{\alpha=1}^m dz_{\alpha}\wedge d\bar{z}_{\alpha}$
  • potential $u(z)=\frac{1}{2}|z|^2$

dimension 1 case

  • $h_{\alpha\overline{\alpha}}=h_{\overline{\alpha}\alpha}:=h$
  • $\Omega=-2ih\,dz \wedge d\overline{z}$
  • for $\mathbb{P}^{1}$,

$$ \Omega=\frac{-i}{2\pi}\frac{dz \wedge d\bar{z}}{(1+|z|^2)^2} $$ see Chern class

etc


cohomology theory

  • Hodge theory of harmonic forms
  • compact Kähler manifold of dimension n
  • Dolbeault cohomology
  • $h^{p,q}=\operatorname{dim} H^{p,q}(X)$
  • $h^{p,q}=h^{q,p}$
  • Serre duality $h^{p,q}=h^{n-p,n-q}$


Hodge decomposition theorem

  • Let $M$ be a compact Kähler manifold. Let $H^{p,q}(M)$ be the space of cohomology classes represented by a closed form of type $(p,q)$. There is a direct sum decomposition

$$ H^{m}_{dR}(M;\mathbb{C})=\bigoplus_{p+q=m}H^{p,q}(M) $$ Moreover, $H^{p,q}(M)=\overline{H^{q,p}(M)}$. In other words, $H^{m}_{dR}(M)$ carries a real Hodge structure of weight $m$.


Delbeault

  • cohomology of sheaves of holomorphic forms
theorem

Let $\Omega$ be the space of holomorphic $p$-forms on $M$ $$ H^{p,q}(M)\cong H^q(M,\Omega^p) $$


computational resource


expositions

articles

  • Berczi, Gergely. “Towards the Green-Griffiths-Lang Conjecture via Equivariant Localisation.” arXiv:1509.03406 [math], September 11, 2015. http://arxiv.org/abs/1509.03406.
  • Treger, Robert. ‘On Uniformization of Compact Kahler Manifolds’. arXiv:1507.01379 [math], 6 July 2015. http://arxiv.org/abs/1507.01379.
  • Dinh, Tien-Cuong, Fei Hu, and De-Qi Zhang. ‘Compact K"ahler Manifolds Admitting Large Solvable Groups of Automorphisms’. arXiv:1502.07060 [math], 25 February 2015. http://arxiv.org/abs/1502.07060.