"Gauge theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
2번째 줄: | 2번째 줄: | ||
* gauge = measure | * gauge = measure | ||
− | * gauge invariance | + | * gauge invariance = measurement에 있어서의 invariance를 말함 |
* Lagrangian should be gauge invariant. | * Lagrangian should be gauge invariant. | ||
99번째 줄: | 99번째 줄: | ||
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]<br> | * [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]<br> | ||
− | * | + | * <br> |
107번째 줄: | 107번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5> | ||
− | + | * [[differential geometry and topology|differential geometry]]<br> | |
117번째 줄: | 117번째 줄: | ||
* http://en.wikipedia.org/wiki/principal_bundle | * http://en.wikipedia.org/wiki/principal_bundle | ||
* [http://en.wikipedia.org/wiki/Connection_%28vector_bundle%29 http://en.wikipedia.org/wiki/Connection_(vector_bundle)] | * [http://en.wikipedia.org/wiki/Connection_%28vector_bundle%29 http://en.wikipedia.org/wiki/Connection_(vector_bundle)] | ||
− | |||
− | |||
− | |||
− | |||
128번째 줄: | 124번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5> | ||
− | * The Geometry of Physics: An | + | * <br> |
+ | * The Geometry of Physics: An Introduction | ||
* An elementary primer for gauge theory | * An elementary primer for gauge theory | ||
* [[2009년 books and articles|찾아볼 수학책]] | * [[2009년 books and articles|찾아볼 수학책]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">expositions</h5> | ||
+ | |||
+ | * [http://www.thetangentbundle.net/papers/gauge.pdf Connections, Gauges and Field Theories]<br> | ||
+ | * WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG<br> | ||
144번째 줄: | 142번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> | ||
− | * [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial] | + | * <br> |
− | + | * [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial] Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[http://www.zentralblatt-math.org/zmath/en/ ] | |
− |
2011년 4월 10일 (일) 06:21 판
meaning of the gague invariance
- gauge = measure
- gauge invariance = measurement에 있어서의 invariance를 말함
- Lagrangian should be gauge invariant.
gauge field
- a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one
- one example is the electromagnetic field
Gauge invariance of the QED Lagrangian
\(\mathcal{L} = \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} -e\bar{\psi}\gamma^\mu \psi A_\mu\)
Now we have a Lagrangian with interaction terms.
- local phase transformation of fields
\(\psi(x) \to e^{i\alpha(x)}\psi(x)\) - gauge transformation of electromagnetic field
\(A_{\mu}(x) \to A_{\mu}(x)+\frac{1}{e}\partial_{\mu}\alpha(x)}\) - Look at the QED page
gauge field tensor
- electromagnetic field tensor \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\)
- general gauge fields tensor \(G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}\)
examples of renormalizable gauge theory
Abelian gauge theory
- abelian gauge theory has a duality
Non-Abelian gauge theory
differential geometry formulation
- manifold \(\mathbb R^{1,3}\) and having a vector bundle gives a connection
- connection \(A\) = special kind of 1-form
- \(dA\) = 2-form which measures the electromagnetic charge
- Then the Chern class measures the magnetic charge.
Principal G-bundle
3d Chern-Simons theory
- 3d Chern-Simons theory on \(\Sigma\times \mathbb R^{1}\) with gauge choice \(A_0=0\) is the moduli space of flat connections on \(\Sigma\).
- analogy with class field theory
- replace \(\Sigma\) by \(spec O_K\)
- then flat connection on \(spec O_K\) is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)
- Now from An's article,
메모
encyclopedia
- http://en.wikipedia.org/wiki/principal_bundle
- http://en.wikipedia.org/wiki/Connection_(vector_bundle)
books
-
- The Geometry of Physics: An Introduction
- An elementary primer for gauge theory
- 찾아볼 수학책
expositions
- Connections, Gauges and Field Theories
- WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG
articles
-
- Quantum field theory and the Jones polynomial Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[1]