"Gauge theory"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)  | 
				imported>Pythagoras0  잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)  | 
				||
| 42번째 줄: | 42번째 줄: | ||
| − | + | ==examples of renormalizable gauge theory==  | |
* [[QED]]<br>  | * [[QED]]<br>  | ||
| 68번째 줄: | 68번째 줄: | ||
| − | + | ==differential geometry formulation==  | |
*  manifold <math>\mathbb R^{1,3}</math> and having a vector bundle gives a connection<br>  | *  manifold <math>\mathbb R^{1,3}</math> and having a vector bundle gives a connection<br>  | ||
| 79번째 줄: | 79번째 줄: | ||
| − | + | ==Principal G-bundle==  | |
* [[principal bundles]]<br>  | * [[principal bundles]]<br>  | ||
| 90번째 줄: | 90번째 줄: | ||
| − | + | ==3d Chern-Simons theory==  | |
*  3d Chern-Simons theory on <math>\Sigma\times \mathbb R^{1}</math> with gauge choice <math>A_0=0</math> is the moduli space of flat connections on <math>\Sigma</math>.<br>  | *  3d Chern-Simons theory on <math>\Sigma\times \mathbb R^{1}</math> with gauge choice <math>A_0=0</math> is the moduli space of flat connections on <math>\Sigma</math>.<br>  | ||
| 102번째 줄: | 102번째 줄: | ||
| − | + | ==메모==  | |
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]<br>  | * [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]<br>  | ||
| 111번째 줄: | 111번째 줄: | ||
| − | + | ==related items==  | |
* [[differential geometry and topology|differential geometry]]<br>  | * [[differential geometry and topology|differential geometry]]<br>  | ||
| 119번째 줄: | 119번째 줄: | ||
| − | + | ==encyclopedia==  | |
* http://en.wikipedia.org/wiki/principal_bundle  | * http://en.wikipedia.org/wiki/principal_bundle  | ||
| 128번째 줄: | 128번째 줄: | ||
| − | + | ==books==  | |
* The Geometry of Physics: An Introduction  | * The Geometry of Physics: An Introduction  | ||
| 138번째 줄: | 138번째 줄: | ||
| − | + | ==expositions==  | |
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf On the Origins of Gauge Theory] , Callum Quigley, April 14, 2003<br>  | * [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf On the Origins of Gauge Theory] , Callum Quigley, April 14, 2003<br>  | ||
| 150번째 줄: | 150번째 줄: | ||
| − | + | ==articles==  | |
* [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial] Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[http://www.zentralblatt-math.org/zmath/en/ ]  | * [http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.cmp/1104178138 Quantum field theory and the Jones polynomial] Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[http://www.zentralblatt-math.org/zmath/en/ ]  | ||
2012년 10월 28일 (일) 16:21 판
meaning of the gague invariance
- gauge = measure
 - gauge invariance = measurement에 있어서의 invariance를 말함
 - Lagrangian should be gauge invariant.
 
gauge field
- a gauge field is defined as a four-vector field with the freedom of gauge transformation, and it corresponds to massless particlas of spin one
 
- one example is the electromagnetic field
 
Gauge invariance of the QED Lagrangian
\(\mathcal{L} = \bar{\psi} (i\gamma^\mu \partial_\mu -m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} -e\bar{\psi}\gamma^\mu \psi A_\mu\)
Now we have a Lagrangian with interaction terms.
- local phase transformation of fields
\(\psi(x) \to e^{i\alpha(x)}\psi(x)\) - gauge transformation of electromagnetic field
\(A_{\mu}(x) \to A_{\mu}(x)+\frac{1}{e}\partial_{\mu}\alpha(x)}\) - Look at the QED page
 
gauge field tensor
- electromagnetic field tensor  \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!\)
 - general gauge fields tensor  \(G_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}-gw^{abc}W_{\mu}^{b}W_{\nu}^{c}\)
 
examples of renormalizable gauge theory
- QED
 - QCD
 - renormalization
 
Abelian gauge theory
- abelian gauge theory has a duality
 
Non-Abelian gauge theory
differential geometry formulation
- manifold \(\mathbb R^{1,3}\) and having a vector bundle gives a connection
 - connection \(A\) = special kind of 1-form 
 - \(dA\) = 2-form which measures the electromagnetic charge
 - Then the Chern class measures the magnetic charge.
 
Principal G-bundle
3d Chern-Simons theory
- 3d Chern-Simons theory on \(\Sigma\times \mathbb R^{1}\) with gauge choice \(A_0=0\) is the moduli space of flat connections on \(\Sigma\).
 - analogy with class field theory
 - replace \(\Sigma\) by \(spec O_K\)
 - then flat connection on \(spec O_K\) is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)
 - Now from An's article, 
 
메모
encyclopedia
- http://en.wikipedia.org/wiki/principal_bundle
 - http://en.wikipedia.org/wiki/Connection_(vector_bundle)
 
books
- The Geometry of Physics: An Introduction
 - An elementary primer for gauge theory
 - 찾아볼 수학책
 
expositions
- On the Origins of Gauge Theory , Callum Quigley, April 14, 2003
 
- WHAT IS A CONNECTION, AND WHAT IS IT GOOD FOR? TIMOTHY E. GOLDBERG
 
articles
- Quantum field theory and the Jones polynomial Edward Witten, Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399[1]