"Classical field theory and classical mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
12번째 줄: 12번째 줄:
 
<h5>Euler-Lagrange equation</h5>
 
<h5>Euler-Lagrange equation</h5>
  
* if field satisfies the equation of motion, EL is satisfied
+
* if field satisfies the equation of motion, EL is satisfied<br><math>\partial_\mu \left( \frac{\partial \mathcal{L}}{\partial ( \partial_\mu \psi )} \right) - \frac{\partial \mathcal{L}}{\partial \psi} = 0.</math><br>
  
 
 
 
 
20번째 줄: 20번째 줄:
 
<h5>equation of continuity</h5>
 
<h5>equation of continuity</h5>
  
*  current density <math>J_{\mu}</math> satisfies<br><math>\partial^{\mu} J_{\mu}=0</math><br>
+
*  current density <math>J_{\mu}=(J_0,J_1,J_2,J_3)</math> satisfies<br><math>\partial^{\mu} J_{\mu}=0</math><br>
*  we get a conserved quantity<br><math>G:=\int_V J_0(x) \,d^3 x</math><br>
+
*  we get a conserved quantity<br><math>G=\int_V J_0(x) \,d^3 x</math><br>
 
* Lagrangian can be used to express the current density explicity
 
* Lagrangian can be used to express the current density explicity
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5>currents</h5>
 +
 +
* quantum analogues of the conser
  
 
 
 
 
60번째 줄: 70번째 줄:
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/Classical_field_theory
 
* http://en.wikipedia.org/wiki/Continuity_equation
 
* http://en.wikipedia.org/wiki/Continuity_equation
 
* http://en.wikipedia.org/wiki/current_density
 
* http://en.wikipedia.org/wiki/current_density

2010년 3월 16일 (화) 09:32 판

introduction
  • can be formulated using classical fields and lagrangian density
  • change the coordinates and fields accordingly
  • require the invariance of action integral over arbitrary region
  • this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity

 

 

Euler-Lagrange equation
  • if field satisfies the equation of motion, EL is satisfied
    \(\partial_\mu \left( \frac{\partial \mathcal{L}}{\partial ( \partial_\mu \psi )} \right) - \frac{\partial \mathcal{L}}{\partial \psi} = 0.\)

 

 

equation of continuity
  • current density \(J_{\mu}=(J_0,J_1,J_2,J_3)\) satisfies
    \(\partial^{\mu} J_{\mu}=0\)
  • we get a conserved quantity
    \(G=\int_V J_0(x) \,d^3 x\)
  • Lagrangian can be used to express the current density explicity

 

 

 

currents
  • quantum analogues of the conser

 

 

history

 

 

related items

 

 

books

 

 

encyclopedia

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

articles

 

 

 

experts on the field

 

 

TeX