"Classical field theory and classical mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
108번째 줄: 108번째 줄:
  
 
* [[Electromagnetics|Electromagnetism]]
 
* [[Electromagnetics|Electromagnetism]]
* [[Einstein field equation]]
+
* [[Einstein field equation|Einstein field hequation]]
 
* [[symplectic geometry|sympletic geometry]]
 
* [[symplectic geometry|sympletic geometry]]
 
* [[5 integrable systems and solvable models|integrable Hamiltonian systems and solvable models]]
 
* [[5 integrable systems and solvable models|integrable Hamiltonian systems and solvable models]]
142번째 줄: 142번째 줄:
  
 
*  Classical mechanics [[2610572/attachments/1142452|Classical_Mechanics.djvu]]V.I. Arnold<br>
 
*  Classical mechanics [[2610572/attachments/1142452|Classical_Mechanics.djvu]]V.I. Arnold<br>
 +
*  Electrodynamics and Classical Theory of Fields and Particles http://library.nu/docs/1U9OCRM7QY/Electrodynamics and Classical Theory of Fields and Particle<br>
  
 
* [[2010년 books and articles]]<br>
 
* [[2010년 books and articles]]<br>

2011년 10월 1일 (토) 07:22 판

introduction
  • can be formulated using classical fields and lagrangian density
  • change the coordinates and fields accordingly
  • require the invariance of action integral over arbitrary region
  • this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity
  • three important conserved quantity
    • energy
    • momentum
    • angular momentum

 

 

notation
  • \(T\) kinetic energy
  • \(V\) potential energy
  • We have Lagrangian \(L=T-V\)
  • Define the Hamiltonian
  • \(H =p\dot q-L\)
  • \(p\dot q\) is twice of kinetic energy
  • Thus the Hamiltonian represents \(H=T+V\) the total energy of the system

 

 

Lagrangian formalism

 

 

 

Hamiltonian mechanics

 

 

 

Poisson bracket

For \(f(p_i,q_i,t), g(p_i,q_i,t)\) , we define the Poisson bracket

\(\{f,g\} = \sum_{i=1}^{N} \left[ \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]\)

In quantization we have correspondence

\(\{f,g\} = \frac{1}{i}[u,v]\)

 

 

phase space

 

 

canonically conjugate momentum

 

 

 

links and webpages

 

question and answers(Math Overflow)

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

articles

 

 

 

blogs

 

 

experts on the field

 

 

links