"Classical field theory and classical mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
20번째 줄: 20번째 줄:
 
*  We have Lagrangian <math>L=T-V</math><br>
 
*  We have Lagrangian <math>L=T-V</math><br>
 
*  Define the Hamiltonian<br>
 
*  Define the Hamiltonian<br>
* <math>H =p\dot q-L</math><br>
+
* <math>H =\sum_{k=1}^{N} p\dot q-L</math><br>
 
* <math>p\dot q</math> is twice of kinetic energy<br>
 
* <math>p\dot q</math> is twice of kinetic energy<br>
 
*  Thus the Hamiltonian represents <math>H=T+V</math> the total energy of the system<br>
 
*  Thus the Hamiltonian represents <math>H=T+V</math> the total energy of the system<br>
35번째 줄: 35번째 줄:
  
 
 
 
 
 +
 +
<h5 style="margin: 0px; line-height: 2em;">canonically conjugate momentum</h5>
 +
 +
*  dynamical variables <math>q_{k}, \dot{q}_k</math> for <math>k=1,\cdots, n</math><br>
 +
*  canonically conjugate momenta<br><math>p_{k}=\frac{\partial L}{\partial \dot{q}_k}</math><br>
 +
* instead of <math>q_{k}, \dot{q}_k</math>, one can use <math>q_{k}, p_{k}</math>
  
 
 
 
 
64번째 줄: 70번째 줄:
  
 
<h5 style="margin: 0px; line-height: 2em;">phase space</h5>
 
<h5 style="margin: 0px; line-height: 2em;">phase space</h5>
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">canonically conjugate momentum</h5>
 
 
<math>{\partial L\over\partial q} - {\mathrm{d}\over \mathrm{d}t }{\partial L\over\partial \dot{q}} = 0</math>
 
  
 
 
 
 

2012년 6월 10일 (일) 17:23 판

introduction
  • can be formulated using classical fields and Lagrangian density
  • change the coordinates and fields accordingly
  • require the invariance of action integral over arbitrary region
  • this invariance consists of two parts : Euler-Lagrange equation and the equation of continuity
  • three important conserved quantity
    • energy
    • momentum
    • angular momentum

 

 

notation
  • \(T\) kinetic energy
  • \(V\) potential energy
  • We have Lagrangian \(L=T-V\)
  • Define the Hamiltonian
  • \(H =\sum_{k=1}^{N} p\dot q-L\)
  • \(p\dot q\) is twice of kinetic energy
  • Thus the Hamiltonian represents \(H=T+V\) the total energy of the system

 

 

Lagrangian formalism

 

 

canonically conjugate momentum
  • dynamical variables \(q_{k}, \dot{q}_k\) for \(k=1,\cdots, n\)
  • canonically conjugate momenta
    \(p_{k}=\frac{\partial L}{\partial \dot{q}_k}\)
  • instead of \(q_{k}, \dot{q}_k\), one can use \(q_{k}, p_{k}\)

 

Hamiltonian mechanics

 

 

 

Poisson bracket

For \(f(p_i,q_i,t), g(p_i,q_i,t)\) , we define the Poisson bracket

\(\{f,g\} = \sum_{i=1}^{N} \left[ \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]\)

In quantization we have correspondence

\(\{f,g\} = \frac{1}{i}[u,v]\)

 

 

phase space

 

 

하위페이지

 

 

 

links and webpages

 

question and answers(Math Overflow)

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books