"등각 사상 (conformal mapping)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
11번째 줄: 11번째 줄:
 
==local expression==
 
==local expression==
 
* <math>(\varphi^{*}g')_{\mu\nu}(a)=g'_{ij}(\varphi(a))(\partial_{\mu}\varphi^{i})(\partial_{\nu}\varphi^{j})</math> 이므로, 등각 사상이 되려면
 
* <math>(\varphi^{*}g')_{\mu\nu}(a)=g'_{ij}(\varphi(a))(\partial_{\mu}\varphi^{i})(\partial_{\nu}\varphi^{j})</math> 이므로, 등각 사상이 되려면
:<math>\Omega^{2}g_{\mu\nu}(a)=g'_{ij}(\varphi(a))(\partial_{\mu}\varphi^{i})(\partial_{\nu}\varphi^{j})</math> 가 만족되어야 한다<br>
+
:<math>\Omega^{2}g_{\mu\nu}(a)=g'_{ij}(\varphi(a))(\partial_{\mu}\varphi^{i})(\partial_{\nu}\varphi^{j})</math> 가 만족되어야 한다
  
  
65번째 줄: 65번째 줄:
 
==수학용어번역==
 
==수학용어번역==
  
*  단어사전<br>
+
*  단어사전
 
** http://translate.google.com/#en|ko|
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* 발음사전 http://www.forvo.com/search/
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]

2020년 11월 16일 (월) 06:32 판

개요

  • \((M,g)\)와 \((M',g')\) 는 같은 차원의 두 리만 다양체
  • \(\varphi : M\to M'\) 가 적당한 함수 \(\Omega : M\to \mathbb{R_{+}}\) 에 대하여, \(\varphi^{*}g'=\Omega^2g\) 를 만족시킬 때, 이를 등각 사상이라 하며, \(\Omega\) 를 conformal factor라 부른다
  • isometry는 등각 사상의 특별한 경우가 된다

 

 

local expression

  • \((\varphi^{*}g')_{\mu\nu}(a)=g'_{ij}(\varphi(a))(\partial_{\mu}\varphi^{i})(\partial_{\nu}\varphi^{j})\) 이므로, 등각 사상이 되려면

\[\Omega^{2}g_{\mu\nu}(a)=g'_{ij}(\varphi(a))(\partial_{\mu}\varphi^{i})(\partial_{\nu}\varphi^{j})\] 가 만족되어야 한다


복소함수론에서의 등각 사상

  • 도메인 \(U\subset \mathbb{C}\)에 대하여, 유클리드 메트릭이 주어졌다고 가정
  • 함수 \(\varphi : U\to \mathbb{C}\)가 등각 사상이 될 조건은 코쉬-리만 방정식 으로 주어진다


 

등각 사상의 예

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트