"라플라스 변환"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
12번째 줄: | 12번째 줄: | ||
==정의== | ==정의== | ||
− | * 함수 <math>f(t)</math>에 대한 라플라스 변환을 다음과 같이 정의함:<math>F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt</math | + | * 함수 <math>f(t)</math>에 대한 라플라스 변환을 다음과 같이 정의함:<math>F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt</math> |
20번째 줄: | 20번째 줄: | ||
==성질== | ==성질== | ||
− | * 함수 <math>f</math>에 대한 도함수의 라플라스 변환은 다음과 같다:<math>\mathcal{L}\left\{\frac{df}{dt}\right\} = s\cdot\mathcal{L} \left\{ f(t) \right\}-f(0)</math | + | * 함수 <math>f</math>에 대한 도함수의 라플라스 변환은 다음과 같다:<math>\mathcal{L}\left\{\frac{df}{dt}\right\} = s\cdot\mathcal{L} \left\{ f(t) \right\}-f(0)</math> |
61번째 줄: | 61번째 줄: | ||
* <math>y''(t)-2 y'(t)+y(t)=e^t</math> | * <math>y''(t)-2 y'(t)+y(t)=e^t</math> | ||
− | * 양변에 라플라스 변환을 취하면,:<math>s^2 Y(s)+Y(s)-2 (s Y(s)-1)-s+1=\frac{1}{s-1}</math>, 여기서 <math>Y(s)=\mathcal{L} \left\{ f(t) \right\}</math>. | + | * 양변에 라플라스 변환을 취하면,:<math>s^2 Y(s)+Y(s)-2 (s Y(s)-1)-s+1=\frac{1}{s-1}</math>, 여기서 <math>Y(s)=\mathcal{L} \left\{ f(t) \right\}</math>. |
* <math>Y(s)=\frac{1}{s-1}-\frac{2}{(s-1)^2}+\frac{1}{(s-1)^3}</math> | * <math>Y(s)=\frac{1}{s-1}-\frac{2}{(s-1)^2}+\frac{1}{(s-1)^3}</math> | ||
* <math>y(t)=e^t-2t e^t+\frac{t^2}{2}e^t</math> 는 주어진 미분방정식의 해가 된다 | * <math>y(t)=e^t-2t e^t+\frac{t^2}{2}e^t</math> 는 주어진 미분방정식의 해가 된다 | ||
71번째 줄: | 71번째 줄: | ||
==멜린변환과의 관계== | ==멜린변환과의 관계== | ||
− | * [[푸리에 변환]] 항목 참조:<math>\hat{f}(s)= \int_{0}^{\infty} f(x) x^{s}\frac{dx}{x}</math | + | * [[푸리에 변환]] 항목 참조:<math>\hat{f}(s)= \int_{0}^{\infty} f(x) x^{s}\frac{dx}{x}</math> |
− | * 멜린변환에서 <math>x=e^{-t}</math>로 변수를 치환하면, 라플라스 변환을 얻는다:<math>\int_{0}^{\infty} f(e^{-t}) e^{-st}\,dt</math | + | * 멜린변환에서 <math>x=e^{-t}</math>로 변수를 치환하면, 라플라스 변환을 얻는다:<math>\int_{0}^{\infty} f(e^{-t}) e^{-st}\,dt</math> |
2020년 11월 16일 (월) 06:33 판
개요
- 푸리에 변환의 변형
- 어떤 미분방정식들의 해를 대수적 조작을 통해 얻을 수 있게 해주는 변환
- 라플라스 변환을 미분방정식에 응용한 사람은 Oliver Heaviside http://en.wikipedia.org/wiki/Oliver_Heaviside 이다
- operational calculus 또는 Heaviside calculus 의 도구
정의
- 함수 \(f(t)\)에 대한 라플라스 변환을 다음과 같이 정의함\[F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt\]
성질
- 함수 \(f\)에 대한 도함수의 라플라스 변환은 다음과 같다\[\mathcal{L}\left\{\frac{df}{dt}\right\} = s\cdot\mathcal{L} \left\{ f(t) \right\}-f(0)\]
(정리)
\(f\)가 유계이고, \(t\geq 0\)에서 조각적 연속(piecewise continuous)라 하자.
\(\mathfrak{R}(s)\geq 0\)에서 정의된 함수 \(F(s) = \mathcal{L} \left\{f(t)\right\}=\int_0^{\infty} e^{-st} f(t) \,dt\) 가 \(\mathfrak{R}(s)\geq 0\)에서 해석함수로 확장되면,
\(\int_0^{\infty} f(t) \,dt\)이 존재하고, \(F(0) = \int_0^{\infty} f(t) \,dt\)가 성립한다.
예
\(\left(\frac{t^ne^t}{n!}\right)'=\frac{t^{n-1}e^t}{(n-1)!}+\frac{t^ne^t}{n!}\) 로부터 \(\mathcal{L}\left\{\frac{t^{n-1}e^t}{(n-1)!}\right\} = (s-1)\cdot\mathcal{L} \left\{ \frac{t^ne^t}{n!}\right\}\)
\(\mathcal{L}\left\{e^t\right\} = \frac{1}{s-1}\)
\(\mathcal{L}\left\{t e^t\right\} = \frac{1}{(s-1)^2}\)
\(\mathcal{L}\left\{\frac{t^2 e^t}{2!}\right\} = \frac{1}{(s-1)^3}\)
\(\mathcal{L}\left\{\frac{t^3 e^t}{3!}\right\} = \frac{1}{(s-1)^4}\)
...
상수계수 미분방정식에의 응용
- \(y''(t)-2 y'(t)+y(t)=e^t\)
- 양변에 라플라스 변환을 취하면,\[s^2 Y(s)+Y(s)-2 (s Y(s)-1)-s+1=\frac{1}{s-1}\], 여기서 \(Y(s)=\mathcal{L} \left\{ f(t) \right\}\).
- \(Y(s)=\frac{1}{s-1}-\frac{2}{(s-1)^2}+\frac{1}{(s-1)^3}\)
- \(y(t)=e^t-2t e^t+\frac{t^2}{2}e^t\) 는 주어진 미분방정식의 해가 된다
멜린변환과의 관계
- 푸리에 변환 항목 참조\[\hat{f}(s)= \int_{0}^{\infty} f(x) x^{s}\frac{dx}{x}\]
- 멜린변환에서 \(x=e^{-t}\)로 변수를 치환하면, 라플라스 변환을 얻는다\[\int_{0}^{\infty} f(e^{-t}) e^{-st}\,dt\]
역사
- 오일러
- 라플라스
- 헤비사이드
- 수학사 연표
메모
관련된 항목들
매스매티카 파일 및 계산 리소스