"퇴플리츠 연산자"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
Pythagoras0 (토론 | 기여) |
||
16번째 줄: | 16번째 줄: | ||
<references /> | <references /> | ||
− | == 메타데이터 == | + | ==메타데이터== |
− | |||
===위키데이터=== | ===위키데이터=== | ||
* ID : [https://www.wikidata.org/wiki/Q7812935 Q7812935] | * ID : [https://www.wikidata.org/wiki/Q7812935 Q7812935] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'toeplitz'}, {'LEMMA': 'operator'}] |
2021년 2월 16일 (화) 23:48 기준 최신판
노트
위키데이터
- ID : Q7812935
말뭉치
- It is a natural ask of when Toeplitz operator becomes normal.[1]
- (i) Let be an analytic Toeplitz operator in ; that is, .[2]
- Let us suppose, for now, is a coanalytic Toeplitz operator in and .[2]
- Toeplitz operator in , cannot be of finite rank (see Remark 7).[2]
- Suppose now that is known to be a Toeplitz operator in , for some .[2]
- ( T n ) , the Toeplitz operator T ϕ is defined as the compression of M ϕ to H 2 ( D n ) .[3]
- A necessary and sufficient condition that an operator on H 2 ( D n ) be a Toeplitz operator is that it can be represented as a Toeplitz matrix of level n .[3]
- If A is a Toeplitz operator on H 2 ( D n ) , then, by Theorem 3.4, A can be represented as a Toeplitz matrix of level- n .[3]
- it can be shown that A is a Toeplitz operator on H 2 ( D n ) .[3]
소스
메타데이터
위키데이터
- ID : Q7812935
Spacy 패턴 목록
- [{'LOWER': 'toeplitz'}, {'LEMMA': 'operator'}]