"다이로그 함수와 부정적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
6번째 줄: 6번째 줄:
  
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">오일러치환</h5>
 +
 +
*  유리함수 <math>R(x,y)</math>와 <math>Q(x,y)</math>에 대하여 다음과 같은 적분에 대하여 [[오일러 치환]]을 사용할 수 있다<br><math>\int R(x,\sqrt{ax^2+bx+c})\log Q(x,\sqrt{ax^2+bx+c})\,dx</math><br>
 +
* <math>c>0</math> 일때, <math>\sqrt{ax^2+bx+c}=xt+\sqrt{c}</math> 로 치환<br>
 +
*  예<br><math>I=\int \frac{1}{x\sqrt{1+x^2}}\log(x+\sqrt{1+x^2})\,dx</math><br>  <br><math>\sqrt{1+x^2}=xt+1</math><br><math>x=\frac{2t}{1-t^2}</math><br><math>I=\int\frac{1}{t}\{\log(1+t)-\log(1-t)\}\,dt</math><br><math>=\operatorname{Li}_{2}(\frac{\sqrt{1+x^2}-1}{x})-\operatorname{Li}_{2}(1-\frac{\sqrt{1+x^2}}{x})</math><br>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">여러가지 부정적분</h5>
  
 
 
 
 
22번째 줄: 38번째 줄:
  
 
<math>\int_{0}^{x}\frac{\log x\log(x-1)}{x}\,dx=\operatorname{Li}_3(x)-\log x\operatorname{Li}_2(x)</math>
 
<math>\int_{0}^{x}\frac{\log x\log(x-1)}{x}\,dx=\operatorname{Li}_3(x)-\log x\operatorname{Li}_2(x)</math>
 
 
 
 
 
 
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">오일러치환</h5>
 
 
*  유리함수 <math>R(x,y)</math>와 <math>Q(x,y)</math>에 대하여 다음과 같은 적분에 대하여 [[오일러 치환]]을 사용할 수 있다<br><math>\int R(x,\sqrt{ax^2+bx+c})\log Q(x,\sqrt{ax^2+bx+c})\,dx</math><br>
 
* <math>c>0</math> 일때, <math>\sqrt{ax^2+bx+c}=xt+\sqrt{c}</math> 로 치환<br>
 
*  예<br><math>I=\int \frac{1}{x\sqrt{1+x^2}}\log(x+\sqrt{1+x^2})\,dx</math><br>  <br><math>\sqrt{1+x^2}=xt+1</math><br><math>x=\frac{2t}{1-t^2}</math><br><math>I=\int\frac{1}{t}\{\log(1+t)-\log(1-t)\}\,dt</math><br>  <br>
 
 
 
 
  
 
 
 
 
70번째 줄: 74번째 줄:
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
  
 
+
* [[#]]<br>
  
 
 
 
 

2010년 6월 5일 (토) 08:22 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

오일러치환
  • 유리함수 \(R(x,y)\)와 \(Q(x,y)\)에 대하여 다음과 같은 적분에 대하여 오일러 치환을 사용할 수 있다
    \(\int R(x,\sqrt{ax^2+bx+c})\log Q(x,\sqrt{ax^2+bx+c})\,dx\)
  • \(c>0\) 일때, \(\sqrt{ax^2+bx+c}=xt+\sqrt{c}\) 로 치환

  • \(I=\int \frac{1}{x\sqrt{1+x^2}}\log(x+\sqrt{1+x^2})\,dx\)
     
    \(\sqrt{1+x^2}=xt+1\)
    \(x=\frac{2t}{1-t^2}\)
    \(I=\int\frac{1}{t}\{\log(1+t)-\log(1-t)\}\,dt\)
    \(=\operatorname{Li}_{2}(\frac{\sqrt{1+x^2}-1}{x})-\operatorname{Li}_{2}(1-\frac{\sqrt{1+x^2}}{x})\)

 

 

여러가지 부정적분

 

\(\alpha\neq\gamma\)인 경우

\(\int\frac{\log(\alpha+t)}{\gamma+t}\,dt=\log(\alpha-\gamma)\log(\frac{\gamma+t}{\gamma})-\operatorname{Li}_{2}(\frac{\gamma+t}{\gamma-\alpha})+C\)

 

\(\int\frac{\log(\gamma+t)}{\gamma+t}\,dt=\frac{1}{2}\log^2(\gamma+t)+C\)

\(\int_{0}^{x}\frac{\log x}{\sqrt{1+x^2}}\,dx=\frac{1}{2}\operatorname{Li}_2((\sqrt{1+x^2}-x)^2)+\frac{1}{2}\log^2(\frac{\sqrt{1+x^2}+x}{2})\)

\(\int_{0}^{x}\frac{\log (1+x^2)}{\sqrt{1-x}}\,dx=\frac{1}{4}\operatorname{Li}_2(-x)+\frac{1}{2}\operatorname{Li}_2(\frac{2x}{1+x^2})-\operatorname{Li}_2(x)+\frac{1}{4}\log^2(1+x^2)-\log(1-x)\log(1+x^2)\)

\(\int_{0}^{x}\frac{\log x\log(x-1)}{x}\,dx=\operatorname{Li}_3(x)-\log x\operatorname{Li}_2(x)\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그