"데데킨트 제타함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
5번째 줄: | 5번째 줄: | ||
− | + | ==기호</h5> | |
* <math>K</math> 수체 | * <math>K</math> 수체 | ||
27번째 줄: | 27번째 줄: | ||
− | + | ==함수방정식</h5> | |
* [[리만제타함수]] 의 함수방정식<br><math>\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)</math><br><math>\xi(s) = \xi(1 - s)</math><br> | * [[리만제타함수]] 의 함수방정식<br><math>\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)</math><br><math>\xi(s) = \xi(1 - s)</math><br> | ||
37번째 줄: | 37번째 줄: | ||
− | + | ==부분제타함수</h5> | |
* 각각의 ideal class <math>A\in C_K</math> 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의<br><math>\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}</math><br> | * 각각의 ideal class <math>A\in C_K</math> 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의<br><math>\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}</math><br> | ||
47번째 줄: | 47번째 줄: | ||
− | + | ==예</h5> | |
* [[이차수체의 데데킨트 제타함수]] | * [[이차수체의 데데킨트 제타함수]] | ||
88번째 줄: | 88번째 줄: | ||
− | + | ==역사</h5> | |
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
96번째 줄: | 96번째 줄: | ||
− | + | ==메모</h5> | |
* [http://www.umpa.ens-lyon.fr/%7Ebrunault/recherche/parma.pdf http://www.umpa.ens-lyon.fr/~brunault/recherche/parma.pdf] | * [http://www.umpa.ens-lyon.fr/%7Ebrunault/recherche/parma.pdf http://www.umpa.ens-lyon.fr/~brunault/recherche/parma.pdf] | ||
105번째 줄: | 105번째 줄: | ||
− | + | ==관련된 항목들</h5> | |
* [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]] | * [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]] | ||
125번째 줄: | 125번째 줄: | ||
− | + | ==사전 형태의 자료</h5> | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
136번째 줄: | 136번째 줄: | ||
− | + | ==리뷰논문, 에세이, 강의노트</h5> | |
* H. M. Stark, "Galois theory, algebraic number theory and zeta functions" ,in \ From number theory to physics", ed. M. Walschmidt, P. Moussa, J.-M. Luck, C. Itzykson Springer<br> | * H. M. Stark, "Galois theory, algebraic number theory and zeta functions" ,in \ From number theory to physics", ed. M. Walschmidt, P. Moussa, J.-M. Luck, C. Itzykson Springer<br> | ||
146번째 줄: | 146번째 줄: | ||
− | + | ==관련논문</h5> | |
* [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions]<br> | * [http://www.springerlink.com/content/v36272439g3g5006/ Hyperbolic manifolds and special values of Dedekind zeta-functions]<br> | ||
160번째 줄: | 160번째 줄: | ||
− | + | ==관련도서</h5> | |
168번째 줄: | 168번째 줄: | ||
− | + | ==관련링크와 웹페이지</h5> | |
* [http://www.math.mcgill.ca/goren/ZetaValues/zeta.html Tables of Values of Dedekind Zeta Functions] | * [http://www.math.mcgill.ca/goren/ZetaValues/zeta.html Tables of Values of Dedekind Zeta Functions] |
2012년 10월 31일 (수) 13:09 판
이 항목의 스프링노트 원문주소
==기호
- \(K\) 수체
- \(C_K\) ideal class group
개요
- 수체 \(K\)에 대하여, 데데킨트 제타함수는 다음과 같이 정의됨
\(\zeta_{K}(s)=\sum_{\mathfrak{a} \text{:ideals}}\frac{1}{N(\mathfrak{a})^s}=\prod_{\mathfrak{p} \text{:prime ideals}} \frac{1}{1-N(\mathfrak{p})^{-s}}\) - 예
- \(K=\mathbb{Q}\) 인 경우, 리만제타함수를 얻음
- 전체 복소평면으로 해석적확장(analytic continuation) 되며, \(s=1\) 에서 simple pole을 가진다
- \(s=1\) 에서의 유수 (유수정리(residue theorem) ) 는 디리클레 class number formula (http://en.wikipedia.org/wiki/Class_number_formula ) 로 주어진다
\( \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_K\cdot R_K}{w_K \cdot \sqrt{|D_K|}}\) - \(s=0\) 에서 order 가 \(r_1+r_2-1\) 인 zero를 가지며 다음이 성립한다
\( \lim_{s\to 0}\frac{\zeta_K(s)}{s^{r_1+r_2-1}}=-\frac{h_K R_K}{w_K}\)
==함수방정식
- 리만제타함수 의 함수방정식
\(\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)\)
\(\xi(s) = \xi(1 - s)\) - 리만제타함수는 \(K=\mathbb{Q}\) 인 경우, 즉 \(\zeta(s)=\zeta_{\mathbb{Q}}(s)\)
- 데데킨트 제타함수에 대해서 다음과 같은 함수방정식이 성립
\(\xi_{K}(s)=\left|d_K\right|{}^{s/2} 2^{r_2 (1-s)} \pi ^{\frac{1}{2} \left(-r_1-2 r_2\right) s}\Gamma \left(\frac{s}{2}\right)^{r_1} \Gamma (s)^{r_2}\zeta _K(s)\)
\(\xi_{K}(s) = \xi_{K}(1 - s)\)
==부분제타함수
- 각각의 ideal class \(A\in C_K\) 에 대하여, 부분 데데킨트 제타함수를 다음과 같이 정의
\(\zeta_{K}(s,A)=\sum_{\mathfrak{a} \in A }\frac{1}{N(\mathfrak{a})^s}\) - 제타함수는 부분 데데킨트 제타함수의 합으로 쓰여지게 됨
\(\zeta_{K}(s)=\sum_{A \in C_K}\zeta_{K}(s,A)\) - 더 일반적으로 준동형사상 \(\chi \colon C_K \to \mathbb C^{*}\)에 대하여, 일반화된 데데킨트 제타함수를 정의할 수 있음
\(L(\chi,s) =\sum_{\mathfrak{a} \text{:ideals}}\frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \sum_{A\in C_K}{\chi(A)}\zeta_K(s,A)\)
==예
special values
Klingen-Siegel 정리
- F : totally real \([F: \mathbb{Q}]=n\)이라 하자
적당한 유리수 \(r(m)\in \mathbb{Q}\)에 대하여
\(\zeta_{F}(2m)=r(m)\frac{\pi^{2mn}}{\sqrt{|d_{F}|}}\), \(m>0\) - http://planetmath.org/SiegelKlingenTheorem.html
Zagier, Bloch, Suslin
- \([K : \mathbb{Q}] = r_1 + 2r_2\)
\(\zeta_{K}(2)\sim_{\mathbb{Q^{*}}} \frac{\pi^{2(r_1 + r_2)}}{\sqrt{|d_{K}|}}\det\{D(\sigma_i(\xi_j))\}_{1\leq i,j\leq r_2}\)
여기서 \(\xi_i,(i=1,\cdots, r_2)\) 는 Bloch group \(B(K)\otimes \mathbb{Q}\)의 Q-basis
D는 Bloch-Wigner dilogarithm 함수
\(a\sim b\) 는 \(a/b\in\mathbb{Q}\) 를 의미함
==역사
==메모
- http://www.umpa.ens-lyon.fr/~brunault/recherche/parma.pdf
- http://mathoverflow.net/questions/87873/dedekind-zeta-function-behaviour-at-1
==관련된 항목들
수학용어번역
==사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Dedekind_zeta_function
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
==리뷰논문, 에세이, 강의노트
- H. M. Stark, "Galois theory, algebraic number theory and zeta functions" ,in \ From number theory to physics", ed. M. Walschmidt, P. Moussa, J.-M. Luck, C. Itzykson Springer
- H. M. Stark, The analytic theory of algebraic numbers http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams/1183537391
- Matilde N. Lalin, Hyperbolic volumes and zeta values An introduction
==관련논문
- Hyperbolic manifolds and special values of Dedekind zeta-functions
- Don Zagier, Inventiones Mathematicae, Volume 83, Number 2 / 1986년 6월
- D. Zagier, Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields http://people.mpim-bonn.mpg.de/zagier/files/scanned/PolylogsDedekindZetaAndKTheory/fulltext.pdf
- Commensurability classes and volumes of hyperbolic 3-manifolds
- A. Borel, Ann. Sc. Norm. Super. Pisa8, 1–33 (1981)
- http://www.jstor.org/action/doBasicSearch?Query=
- http://dx.doi.org/
==관련도서
==관련링크와 웹페이지