"디리클레 베타함수"의 두 판 사이의 차이
67번째 줄: | 67번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">special values for | + | <h5 style="margin: 0px; line-height: 2em;">special values for derivative <math>\beta'(1)</math></h5> |
− | <math>\beta'(1)</math> 의 값 | + | * <math>\beta'(1)</math> 의 값<br> |
+ | * [[후르비츠 제타함수(Hurwitz zeta function)]]를 사용하면, 함수를 다음과 같이 쓸 수 있음<br><math>\beta(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}</math> <br> | ||
+ | * [[후르비츠 제타함수(Hurwitz zeta function)]] 의 에르미트 표현<br><math>\frac{\partial }{\partial s}\zeta(s,a)|_{s=0} =\log \frac{\Gamma(a)}{\sqrt{2\pi}}</math> <br> | ||
+ | * 미분은 다음과 주어짐<br><math>\beta'(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}(-\log 4)+4^{-s}\{\zeta'(s,1/4)-\zeta'(s,3/4)\}</math><br><math>\beta'(0)=\{\zeta(0,1/4)-\zeta(0,3/4)\}(-\log 4)+\{\zeta'(0,1/4)-\zeta'(0,3/4)\}=-\beta(0)\log4+\log\frac{\Gamma(1/4)}{\Gamma(3/4)}=\log\frac{\Gamma(1/4)}{2\Gamma(3/4)}</math><br> | ||
+ | * 함수방정식을 사용하자.<br> | ||
− | + | [[다이감마 함수(digamma function)|Digamma 함수]] 의 값을 이용하여 | |
− | <math>\ | + | <math>\psi\left(\frac{1}{2}\right) =\frac{\Gamma'(\frac{1}{2})}{\Gamma(\frac{1}{2})}= -2\ln{2} - \gamma</math> |
− | <math>\ | + | <math>\Gamma'(1/2)=-\sqrt{\pi}(2\ln2+\gamma)</math> 을 얻는다. |
− | + | 따라서 | |
− | |||
− | |||
− | |||
− | |||
<math>\beta'(1)=\frac{\pi}{4}\gamma+\frac{\pi}{2}\ln(\frac{\Gamma(3/4)}{\Gamma(1/4)}\sqrt{2\pi})</math> | <math>\beta'(1)=\frac{\pi}{4}\gamma+\frac{\pi}{2}\ln(\frac{\Gamma(3/4)}{\Gamma(1/4)}\sqrt{2\pi})</math> | ||
− | + | ||
2009년 11월 11일 (수) 04:45 판
이 항목의 스프링노트 원문주소
간단한 소개
- 정의
\(\beta(s) = \sum_{n=0}^\infty \frac{(-1)^n} {(2n+1)^s} = \frac{1}{\Gamma(s)}\int_0^{\infty}\frac{t^{s-1}e^{-t}}{1 + e^{-2t}}\,dt=\frac{1}{2\Gamma(s)}\int_{0}^{\infty}\frac{1}{\cosh t}t^s \frac{\,dt}{t}\) - \(\chi \colon(\mathbb{Z}/4\mathbb{Z})^\times \to \mathbb C^{*}\) , \(\chi(1)=1\), \(\chi(-1)=-1\) 인 경우의 디리클레 L-함수
\(L(s, \chi) = \sum_{n\geq 1}\frac{\chi(n)}{n^s}, s>1\) - 함수방정식
\(\Lambda(s)=(\frac{\pi}{4})^{-{(s+1)}/{2}}\Gamma(\frac{s+1}{2})\beta(s)\) 라 두면
\(\Lambda(s)=\Lambda(1-s)\) 를 만족 - 함수방정식에 대한 일반적인 정리는 디리클레 L-함수 참조
Special values
- 아래에서 \(E_n\)은 오일러수를 뜻함.
\(E_0=1\),\(E_2 = â1\),\(E_4 = 5\),\(E_6 = â61\),\(E_8 = 1,385\),\(E_{10} = â50,521\),\(E_{12} = 2,702,765\),\(E_{14} = â199,360,981\),\(E_{16} = 19,391,512,145\),\(E_{18} = â2,404,879,675,441\) - \(k\geq 0 \) 인 정수일 때,
\(\beta(2k+1)={{{({-1})^k}{E_{2k}}{\pi^{2k+1}} \over {4^{k+1}}(2k!)}}\) - \(k\geq 0 \)인 정수일 때,
\(\beta(-k)={{E_{k}} \over {2}}\)
\(\beta(0)= \frac{1}{2}\)
\(\beta(1)\;=\;\tan^{-1}(1)\;=\;\frac{\pi}{4}\)
\(\beta(3)\;=\;\frac{\pi^3}{32}\)
\(\beta(5)\;=\;\frac{5\pi^5}{1536}\)
\(\beta(7)\;=\;\frac{61\pi^7}{184320}\)
\(G = \beta(2) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^2} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots \!=0.915965594\cdots\)
- 카탈란상수로 많은 정적분에 등장함
- 카탈란상수로 많은 정적분에 등장함
증명
정수에서의 리만제타함수의 값 에서 사용한 방식을 모방한다.
\(\beta(5)\)의 경우를 예로 구해보자.
\(\oint_{C_{R}}\frac{\pi/2\sec(\pi z/2)}{z^{5}}dz\)
\(C_{R}\)는 원점을 중심으로 반지름이 \(R\) 인 원
이때 \(R\)이 커지면, 적분은 0으로 수렴한다.
유수정리를 사용하자.
정수 \(2k+1\)에 대하여 \(z\approx 2k+1\) 이면, \(\pi/2 \sec \pi z/2 \approx \frac{(-1)^{k+1}}{z-(2k+1)}\)
\(\frac{\pi/2\sec(\pi z/2)}{z^{5}}\)의 정수 \(2k+1\)에서의 유수(residue)는 \((-1)^{k+1}\frac{1}{(2k+1)^{5}}\)로 주어진다.
\(\sec x = 1 + \frac {x^2} {2} + \frac {5 x^4} {24} + \frac {61 x^6} {720} + \cdots=\sum_{n=0}^\infty \frac{(-1)^n E_{2n} x^{2n}}{(2n)!}\) 삼각함수와 쌍곡함수의 맥클로린 급수 참조
를 이용하면 0 에서의 유수는 \(\frac{\pi}{2}\times \frac{5}{24}\times \frac{\pi^4}{16}\)임을 알 수 있다.
그러므로 모든 유수의 합은 \(0=\frac{5\pi^5}{768}+\sum_{-\infty}^{\infty}\frac{(-1)^{k+1}}{(2k+1)^{5}}=\frac{5\pi^5}{768}+\sum_{k=0}^{\infty}\frac{(-1)^{k+1}}{(2k+1)^{5}}+\sum_{n=1}^{\infty}\frac{(-1)^{-n}}{(2n-1)^{5}}=\frac{5\pi^5}{768}+2\sum_{k=1}^{\infty}\frac{(-1)^{k}}{(2k+1)^{5}}\)
따라서 \(\beta(5)=\frac{5\pi^5}{1536}\)
일반적인 자연수 \(k\) 에 대하여도 마찬가지 방법으로
\(\beta(2k+1)={{{({-1})^k}{E_{2k}}{\pi^{2k+1}} \over {4^{k+1}}(2k!)}}\)
을 얻는다.
또한 함수방정식으로부터 \(\beta(0)=\frac{1}{2}\) 와 나머지 짝수인 음의 정수에서의 값을 구할 수 있음
special values for derivative \(\beta'(1)\)
- \(\beta'(1)\) 의 값
- 후르비츠 제타함수(Hurwitz zeta function)를 사용하면, 함수를 다음과 같이 쓸 수 있음
\(\beta(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}\) - 후르비츠 제타함수(Hurwitz zeta function) 의 에르미트 표현
\(\frac{\partial }{\partial s}\zeta(s,a)|_{s=0} =\log \frac{\Gamma(a)}{\sqrt{2\pi}}\) - 미분은 다음과 주어짐
\(\beta'(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}(-\log 4)+4^{-s}\{\zeta'(s,1/4)-\zeta'(s,3/4)\}\)
\(\beta'(0)=\{\zeta(0,1/4)-\zeta(0,3/4)\}(-\log 4)+\{\zeta'(0,1/4)-\zeta'(0,3/4)\}=-\beta(0)\log4+\log\frac{\Gamma(1/4)}{\Gamma(3/4)}=\log\frac{\Gamma(1/4)}{2\Gamma(3/4)}\) - 함수방정식을 사용하자.
Digamma 함수 의 값을 이용하여
\(\psi\left(\frac{1}{2}\right) =\frac{\Gamma'(\frac{1}{2})}{\Gamma(\frac{1}{2})}= -2\ln{2} - \gamma\)
\(\Gamma'(1/2)=-\sqrt{\pi}(2\ln2+\gamma)\) 을 얻는다.
따라서
\(\beta'(1)=\frac{\pi}{4}\gamma+\frac{\pi}{2}\ln(\frac{\Gamma(3/4)}{\Gamma(1/4)}\sqrt{2\pi})\)
재미있는 사실
역사
관련된 다른 주제들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Dirichlet_beta_function
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=secant
- NIST Digital Library of Mathematical Functions
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)